
From Zero to Production: A
Practical Python Development

Pipeline

Michael Borck

2025-08-02

Table of contents

Preface 1
The Evolving Python Ecosystem: AI as a Development Partner . 2
Development Environments and Editor Choice 3
How to Use This Guide . 4
Related Resources . 5

1. Setting the Foundation 7
1.1. Python Project Structure Best Practices 7

1.1.1. Why Use the src Layout? 8
1.1.2. Key Components Explained 8
1.1.3. Getting Started . 9
1.1.4. Applications vs. Packages: Knowing Your Project

Type . 9
1.2. Version Control Fundamentals 11

1.2.1. Setting Up Git . 11
1.2.2. Basic Git Workflow 12
1.2.3. Effective Commit Messages 13
1.2.4. Branching for Features and Fixes 14
1.2.5. Integrating with GitHub or GitLab 14
1.2.6. Git Best Practices for Beginners 15

1.3. Virtual Environments and Basic Dependencies 15
1.3.1. Understanding Virtual Environments 16
1.3.2. Setting Up a Virtual Environment with venv 16
1.3.3. Basic Dependency Management 17
1.3.4. Practical Example: Setting Up a New Project 18

iii

Table of contents

1.4. Jumpstarting Your Projects with Templates 19
1.4.1. Simple Scaffolding Script 19
1.4.2. Cookiecutter Template (For More Comprehensive

Setup) . 20
1.4.3. GitHub Repository Templates (For No-Installation

Simplicity) . 21

2. Advancing Your Workflow 23
2.1. Robust Dependency Management with pip-tools and uv . . 23

2.1.1. The Problem with pip freeze 23
2.1.2. Solution 1: pip-tools 24
2.1.3. Solution 2: uv . 26
2.1.4. Choosing Between pip-tools and uv 28
2.1.5. Best Practices for Either Approach 29

2.2. Code Quality Tools with Ruff 29
2.2.1. The Evolution of Python Code Quality Tools 30
2.2.2. Why Ruff? . 30
2.2.3. Getting Started with Ruff 30
2.2.4. Basic Configuration 31
2.2.5. Using Ruff in Your Workflow 31
2.2.6. Hands-on: Setting Up Ruff Step-by-Step 32
2.2.7. Integrating Ruff with Pre-commit Hooks 34
2.2.8. Real-world Configuration Example 35
2.2.9. Integrating Ruff into Your Editor 37
2.2.10. Gradually Adopting Ruff 37
2.2.11. Enforcing Code Quality in CI 38
2.2.12. Beyond Ruff: When to Consider Other Tools 38

2.3. Automated Testing with pytest 39
2.3.1. Why Testing Matters 39
2.3.2. Getting Started with pytest 39
2.3.3. Setting Up a Testing Project Structure 40
2.3.4. Writing Your First Test 41
2.3.5. Running Tests . 41
2.3.6. pytest Features That Make Testing Easier 42

iv

Table of contents

2.3.7. Test Coverage . 44
2.3.8. Configuring pytest for Your Project 45
2.3.9. Testing Best Practices 46
2.3.10. Common Testing Patterns 46
2.3.11. Testing Strategy . 48
2.3.12. Continuous Testing 48

2.4. Type Checking with mypy 49
2.4.1. Understanding Type Hints 49
2.4.2. Getting Started with mypy 49
2.4.3. Configuring mypy 50
2.4.4. Gradual Typing . 51
2.4.5. Essential Type Annotations 52
2.4.6. Advanced Type Hints 53
2.4.7. Common Challenges and Solutions 55
2.4.8. Integration with Your Workflow 56
2.4.9. The Broader Type Checking Landscape 57
2.4.10. Benefits of Type Checking 57
2.4.11. When to Use Type Hints 57

2.5. Security Analysis with Bandit 58
2.5.1. Understanding Security Static Analysis 58
2.5.2. Getting Started with Bandit 59
2.5.3. Security Issues Bandit Can Detect 59
2.5.4. Configuring Bandit 61
2.5.5. Integrating Bandit in Your Workflow 61
2.5.6. Responding to Security Findings 62
2.5.7. False Positives . 63

2.6. Finding Dead Code with Vulture 63
2.6.1. The Problem of Dead Code 63
2.6.2. Getting Started with Vulture 64
2.6.3. What Vulture Detects 64
2.6.4. Handling False Positives 66
2.6.5. Configuration and Integration 66
2.6.6. Best Practices for Dead Code Removal 67
2.6.7. When to Run Vulture 67

v

Table of contents

3. Documentation and Deployment 69
3.1. Documentation Options: From pydoc to MkDocs 69

3.1.1. Starting Simple with Docstrings 69
3.1.2. Viewing Documentation with pydoc 70
3.1.3. Simple Script for Basic Documentation Site 71
3.1.4. Moving to MkDocs for Comprehensive Documentation 73
3.1.5. Hosting Documentation with GitHub Pages 75
3.1.6. Integrating API Documentation 80
3.1.7. Documentation Best Practices 81
3.1.8. Choosing the Right Documentation Approach 81

3.2. CI/CD Workflows with GitHub Actions 82
3.2.1. Understanding CI/CD Basics 82
3.2.2. Setting Up GitHub Actions 83
3.2.3. Basic Python CI Workflow 83
3.2.4. Using Dependency Caching 85
3.2.5. Adapting for Different Dependency Tools 86
3.2.6. Building and Publishing Documentation 86
3.2.7. Building and Publishing Python Packages 87
3.2.8. Running Tests in Multiple Environments 88
3.2.9. Branch Protection and Required Checks 89
3.2.10. Scheduled Workflows 89
3.2.11. Notifications and Feedback 90
3.2.12. A Complete CI/CD Workflow Example 90
3.2.13. CI/CD Best Practices 95

3.3. Package Publishing and Distribution 96
3.3.1. Preparing Your Package for Distribution 96
3.3.2. Building Your Package 99
3.3.3. Publishing to Test PyPI 100
3.3.4. Publishing to PyPI 100
3.3.5. Automating Package Publishing 100
3.3.6. Versioning Best Practices 102
3.3.7. Creating Releases . 102
3.3.8. Package Maintenance 103
3.3.9. Advanced Distribution Topics 104

vi

Table of contents

3.3.10. Modern vs. Traditional Python Packaging 105

4. Case Study: Building SimpleBot - A Python Development
Workflow Example 109
4.1. Project Overview . 109
4.2. 1. Setting the Foundation 110

4.2.1. Project Structure . 110
4.2.2. Setting Up Version Control 110
4.2.3. Creating Essential Files 112
4.2.4. Virtual Environment Setup 114

4.3. 2. Building the Core Functionality 114
4.4. 3. Package Configuration 121
4.5. Create a file named pyproject.toml with the following con-

tents: . 121
4.6. 4. Writing Tests . 124
4.7. 5. Applying Code Quality Tools 127
4.8. 6. Documentation . 128
4.9. 7. Setup CI/CD with GitHub Actions 133
4.10. 8. Finalizing for Distribution 136
4.11. 9. Project Summary . 136
4.12. 10. Next Steps . 137

5. Advanced Development Techniques 139
5.1. Performance Optimization: Measure First, Optimize Second 139

5.1.1. Establishing Performance Baselines 139
5.1.2. Performance Optimization Strategy 141

5.2. Containerization: Development Environment Consistency . 142
5.2.1. Development Containers vs. Production Containers . 143
5.2.2. Integrating Containers with Your Workflow 143
5.2.3. When to Containerize 144

5.3. Scaling Your Development Process 145
5.3.1. Modular Architecture Patterns 145
5.3.2. Configuration Management 146
5.3.3. Database Integration Patterns 147

vii

Table of contents

5.4. API Development and Integration 150
5.4.1. API Design Principles 150
5.4.2. API Testing Strategy 151

5.5. Cross-Platform Development Considerations 152
5.5.1. Path and Environment Handling 152
5.5.2. Testing Across Platforms 154

5.6. When to Adopt Advanced Techniques 155
5.6.1. Adopt Containerization When: 155
5.6.2. Adopt Performance Optimization When: 155
5.6.3. Adopt Advanced Architecture When: 155
5.6.4. Don’t Adopt Advanced Techniques When: 155

5.7. Maintaining Development Velocity 156

6. Project Management and Automation 157
6.1. Task Automation with Poe the Poet 157

6.1.1. Setting Up Poe the Poet 157
6.1.2. Defining Project Tasks 158
6.1.3. Advanced Task Configuration 159
6.1.4. Running Tasks . 160
6.1.5. Integration with Development Workflow 160

6.2. Project Setup and Structure 161
6.2.1. Modern Python Project Layout 161
6.2.2. Initializing New Projects 163
6.2.3. Application vs. Package Considerations 163

6.3. Team Collaboration Workflows 164
6.3.1. Code Review Standards 164
6.3.2. Release Management 164
6.3.3. Managing Technical Debt 165

6.4. Development Environment Standards 166
6.4.1. Editor-Agnostic Configuration 166
6.4.2. Development Environment Reproducibility 166

7. Conclusion: Embracing Efficient Python Development 169
7.1. The Power of a Complete Pipeline 169

viii

Table of contents

7.2. Your Path Forward: A Practical Adoption Strategy 170
7.2.1. For Your Next New Project (Week 1) 170
7.2.2. For Existing Projects (Month 1-2) 171
7.2.3. For Team Environments (Month 2-3) 171
7.2.4. Advanced Techniques (Month 3+) 171

7.3. Beyond Tools: Engineering Culture 172
7.4. When to Consider More Advanced Tools 172
7.5. Common Implementation Challenges and Solutions 172

7.5.1. “This Seems Like Too Much Overhead” 173
7.5.2. “My Team Resists New Processes” 173
7.5.3. “Tool Configuration is Confusing” 173
7.5.4. “I Don’t Know When to Add Advanced Practices” . 173

7.6. Staying Updated and Growing 174
7.6.1. Following Core Development Principles 174
7.6.2. Practical Learning Approach 174
7.6.3. Continuous Improvement Mindset 174

7.7. Final Thoughts . 175
7.7.1. The Universal Principles Behind the Tools 175
7.7.2. Your Development Journey Continues 175
7.7.3. Starting Your Next Project 176
7.7.4. A Personal Note . 176

Acknowledgments 179
Author . 179
AI Assistance . 179
Technical Production . 180
Special Thanks . 180

Appendices 181

A. Glossary of Python Development Terms 181
A.1. A . 181
A.2. C . 181

ix

Table of contents

A.3. D . 182
A.4. E . 182
A.5. F . 182
A.6. G . 182
A.7. I . 183
A.8. L . 183
A.9. M . 183
A.10.N . 183
A.11.P . 184
A.12.R . 184
A.13.S . 184
A.14.T . 185
A.15.U . 185
A.16.V . 185
A.17.W . 185

B. AI Tools for Python Development 187
B.1. Overview of Current AI Tools and Their Strengths 187

B.1.1. Code Assistants and Completion Tools 187
B.1.2. Conversational AI Assistants 188
B.1.3. AI-Enhanced Code Review Tools 189
B.1.4. AI Documentation Tools 189

B.2. Guidelines for Effective Prompting 190
B.2.1. General Prompting Principles 190
B.2.2. Python-Specific Prompting Strategies 192
B.2.3. Using AI for Code Review 192

C. Python Development Workflow Checklist 197
C.1. Project Progression Path . 200

D. Introduction to Python IDEs and Editors 203
D.1. Visual Studio Code . 203

D.1.1. Key Features for Python Development 203
D.1.2. Integration with Development Tools 204

x

Table of contents

D.1.3. Configuration Example 204
D.1.4. AI-Assistant Integration 205

D.2. Neovim . 205
D.2.1. Key Features for Python Development 205
D.2.2. Integration with Development Tools 205
D.2.3. Configuration Example 206
D.2.4. AI-Assistant Integration 206

D.3. Emacs . 207
D.3.1. Key Features for Python Development 207
D.3.2. Integration with Development Tools 207
D.3.3. Configuration Example 207
D.3.4. AI-Assistant Integration 208

D.4. AI-Enhanced Editors . 208
D.4.1. Cursor . 208
D.4.2. Whisper (Anthropic) 209

D.5. Choosing the Right Environment 209
D.6. Editor-Agnostic Best Practices 210

E. Python Development Tools Reference 213
E.1. Environment & Dependency Management 213
E.2. Code Quality & Formatting 213
E.3. Testing . 214
E.4. Type Checking . 214
E.5. Security & Code Analysis 214
E.6. Documentation . 215
E.7. Package Building & Distribution 215
E.8. Continuous Integration & Deployment 215
E.9. Version Control . 216
E.10.Project Setup & Management 216
E.11.Advanced Tools . 216

F. Comparision of Python Environment and Package Manage-
ment Tools 217
F.1. Comparison Table . 217

xi

Table of contents

F.2. Installation Methods . 219
F.3. Typical Usage Patterns . 220
F.4. Use Case Recommendations 221

F.4.1. For Beginners . 221
F.4.2. For Data Science/Scientific Computing 221
F.4.3. For Library Development 221
F.4.4. For Application Development 221
F.4.5. For CI/CD Environments 221
F.4.6. For Teams with Mixed Experience Levels 222

F.5. Migration Paths . 222
F.6. When to Consider Multiple Tools 222
F.7. Future Trends . 223

G. Python Development Pipeline Scaffold Python Script 225

H. Cookiecutter Template 233
H.1. What is Cookiecutter? . 233
H.2. Getting Started with the Template 233

H.2.1. Prerequisites . 233
H.2.2. Installation . 234
H.2.3. Creating a New Project 234

H.3. Template Features . 234
H.3.1. Project Structure . 235
H.3.2. Development Environment 235
H.3.3. Code Quality Tools 235
H.3.4. Testing . 235
H.3.5. Documentation . 236
H.3.6. CI/CD . 236

H.4. Customization Options . 236
H.4.1. Basic vs. Advanced Setup 236
H.4.2. Documentation Options 236
H.4.3. CI/CD Options . 237

H.5. Template Structure . 237
H.6. Post-Generation Steps . 238

xii

Table of contents

H.7. Extending the Template . 238
H.7.1. Adding Custom Components 238
H.7.2. Modifying Tool Configurations 238
H.7.3. Creating Specialized Variants 238

H.8. Best Practices for Using the Template 239
H.9. Conclusion . 239

I. Hatch - Modern Python Project Management 241
I.1. Introduction to Hatch . 241
I.2. Key Features of Hatch . 241

I.2.1. Project Management 241
I.2.2. Environment Management 242
I.2.3. Build and Packaging 242
I.2.4. Extensibility . 242

I.3. Getting Started with Hatch 243
I.3.1. Installation . 243
I.3.2. Creating a New Project 243
I.3.3. Basic Configuration 244

I.4. Essential Hatch Commands 246
I.4.1. Environment Management 246
I.4.2. Dependency Management 246
I.4.3. Building and Publishing 247
I.4.4. Version Management 247

I.5. Advanced Hatch Features 248
I.5.1. Environment Matrix 248
I.5.2. Custom Scripts . 248
I.5.3. Environment Features 249
I.5.4. Build Hooks . 250

I.6. Best Practices with Hatch 250
I.6.1. Project Structure . 250
I.6.2. Environment Management Strategies 251
I.6.3. Version Control Practices 251
I.6.4. Integration with Development Tools 252

xiii

Table of contents

I.7. Integration with Development Workflows 252
I.7.1. IDE Integration . 252
I.7.2. CI/CD Integration 253

I.8. Troubleshooting Common Issues 254
I.8.1. Environment Creation Failures 254
I.8.2. Build Issues . 254
I.8.3. Plugin Problems . 255

I.9. Comparison with Other Tools 255
I.9.1. Hatch vs. Poetry . 255
I.9.2. Hatch vs. PDM . 255
I.9.3. Hatch vs. pip + venv 256

I.10. When to Use Hatch . 256
I.11. Conclusion . 256

J. Using Conda for Environment Management 259
J.1. Introduction to Conda . 259
J.2. When to Consider Conda 259
J.3. Conda vs. Other Environment Tools 260
J.4. Getting Started with Conda 261

J.4.1. Installation . 261
J.4.2. Basic Conda Commands 261

J.5. Environment Files with Conda 263
J.6. Best Practices for Conda . 264

J.6.1. Channel Management 264
J.6.2. Minimizing Environment Size 265
J.6.3. Managing Conflicting Dependencies 265
J.6.4. Combining Conda with pip 265
J.6.5. Environment Isolation from System Python 266

J.7. Integration with Development Workflows 266
J.7.1. Using Conda with VS Code 266
J.7.2. Using Conda with Jupyter 266
J.7.3. CI/CD with Conda 267

J.8. Common Pitfalls and Solutions 267
J.8.1. Slow Environment Creation 267

xiv

Table of contents

J.8.2. Conflicting Channels 268
J.8.3. Large Environment Sizes 268

J.9. Mamba: A Faster Alternative 268
J.10. Conclusion . 269

K. Getting Started with venv 271
K.1. Introduction to venv . 271
K.2. Why Use venv? . 271
K.3. Getting Started with venv 272

K.3.1. Creating a Virtual Environment 272
K.3.2. Activating the Environment 272
K.3.3. Deactivating the Environment 273

K.4. Advanced venv Options . 274
K.4.1. Creating Environments with Specific Python Versions274
K.4.2. Creating Environments Without pip 274
K.4.3. Creating System Site-packages Access 274
K.4.4. Upgrading pip in a New Environment 275

K.5. Managing Dependencies with venv 275
K.5.1. Installing Packages 275
K.5.2. Tracking Dependencies 275
K.5.3. Installing from Requirements 276

K.6. Best Practices with venv . 276
K.6.1. Directory Naming Conventions 276
K.6.2. Version Control Integration 276
K.6.3. Environment Management Across Projects 277
K.6.4. IDE Integration . 277

K.7. Comparing venv with Other Tools 278
K.7.1. venv vs. virtualenv 278
K.7.2. venv vs. conda . 278
K.7.3. venv vs. Poetry/PDM 279

K.8. Troubleshooting Common Issues 279
K.8.1. Activation Script Not Found 279
K.8.2. Packages Not Found After Installation 279
K.8.3. Permission Issues . 280

xv

Table of contents

K.9. Script Examples for venv Workflows 280
K.9.1. Project Setup Script 280
K.9.2. Environment Recreation Script 281

K.10.Conclusion . 282

L. UV - High-Performance Python Package Management 283
L.1. Introduction to uv . 283
L.2. Key Features and Benefits 283

L.2.1. Performance . 283
L.2.2. Compatibility . 284
L.2.3. Unified Functionality 284

L.3. Getting Started with uv . 285
L.3.1. Installation . 285
L.3.2. Basic Commands . 285
L.3.3. Working with Virtual Environments 286

L.4. Dependency Management with uv 286
L.4.1. Compiling Requirements 286
L.4.2. Development Dependencies 287
L.4.3. Updating Dependencies 287

L.5. Advanced uv Features . 288
L.5.1. Offline Mode . 288
L.5.2. Direct URLs and Git Dependencies 288
L.5.3. Configuration Options 288
L.5.4. Performance Optimization 289

L.6. Integration with Workflows 289
L.6.1. CI/CD Integration 289
L.6.2. IDE Integration . 289

L.7. Comparing uv with Other Tools 290
L.7.1. uv vs. pip . 290
L.7.2. uv vs. pip-tools . 291
L.7.3. uv vs. Poetry/PDM 291

L.8. Best Practices with uv . 291
L.8.1. Dependency Management Workflow 291
L.8.2. Optimal Project Structure 292

xvi

Table of contents

L.8.3. Version Control Considerations 292
L.9. Troubleshooting uv . 293

L.9.1. Common Issues and Solutions 293
L.10.Conclusion . 294

M. Poetry - Modern Python Packaging and Dependency Man-
agement 295
M.1. Introduction to Poetry . 295
M.2. Key Features of Poetry . 295

M.2.1. Dependency Management 295
M.2.2. Project Setup and Configuration 296
M.2.3. Build and Publish Workflow 296

M.3. Getting Started with Poetry 297
M.3.1. Installation . 297
M.3.2. Creating a New Project 297
M.3.3. Basic Configuration 298

M.4. Essential Poetry Commands 299
M.4.1. Managing Dependencies 299
M.4.2. Environment Management 300
M.4.3. Building and Publishing 300
M.4.4. Running Scripts . 301

M.5. Advanced Poetry Features 301
M.5.1. Dependency Groups 301
M.5.2. Version Constraints 302
M.5.3. Private Repositories 302
M.5.4. Script Commands 303

M.6. Best Practices with Poetry 303
M.6.1. Project Structure . 303
M.6.2. Dependency Management Strategies 304
M.6.3. Version Control Practices 305
M.6.4. Integration with Development Tools 305

M.7. Integration with Development Workflows 306
M.7.1. IDE Integration . 306
M.7.2. CI/CD Integration 306

xvii

Table of contents

M.8. Troubleshooting Common Issues 307
M.8.1. Dependency Resolution Errors 307
M.8.2. Virtual Environment Problems 308
M.8.3. Package Publishing Issues 308

M.9. Comparison with Other Tools 309
M.9.1. Poetry vs. pip + venv 309
M.9.2. Poetry vs. Pipenv 309
M.9.3. Poetry vs. PDM . 309
M.9.4. Poetry vs. Hatch . 309

M.10.When to Use Poetry . 310
M.11.Conclusion . 310

N. PDM 313

xviii

Preface

The Python ecosystem has grown tremendously over the past decade,
bringing with it an explosion of tools, frameworks, and practices. While
this rich ecosystem offers powerful capabilities, it often leaves developers—
especially those new to Python—feeling overwhelmed by choice paralysis.
Which virtual environment tool should I use? How should I format my
code? What’s the best way to manage dependencies? How do I set up
testing? The questions seem endless.

This guide aims to cut through the noise by presenting a comprehensive,
end-to-end development pipeline that strikes a deliberate balance between
simplicity and effectiveness. Rather than showcasing every possible tool,
we focus on the vital 80/20 solution: the 20% of practices that yield 80%
of the benefits.

Whether you’re a beginner taking your first steps beyond basic scripts,
an intermediate developer looking to professionalize your workflow, or an
educator teaching best practices, this guide provides a clear path forward.
We’ll build this pipeline in stages:

1. Setting the Foundation: Establishing clean project structure, ver-
sion control, and basic isolation

2. Advancing Your Workflow: Implementing robust dependency
management, code quality tools, testing, and type checking

3. Documentation and Deployment: Creating documentation and
automating workflows with CI/CD

1

Preface

Throughout this journey, we’ll introduce tools and practices that scale
with your needs. We’ll start with simpler approaches and progress to
more robust solutions, letting you decide when to adopt more advanced
techniques based on your project’s complexity. A theme throughout the
book is ‘Simple but no Simplistic’.

To help you quickly apply these practices, we’ve created a companion cook-
iecutter template that automatically sets up a new Python project with
the recommended structure and configurations. You can find this template
at [GitHub repository URL] and use it to jumpstart your projects with
best practices already in place. We’ll discuss how to use and customize
this template throughout the guide.

Importantly, this isn’t just about tools—it’s about building habits and
workflows that make development more enjoyable and productive. The
practices we’ll explore enhance code quality and team collaboration with-
out unnecessary complexity, creating a foundation you can build upon as
your skills and projects grow.

The Evolving Python Ecosystem: AI as a
Development Partner

The Python development landscape has expanded to include AI-powered
tools that enhance developer productivity. These tools - ranging from code
completion systems to large language models (LLMs) that can answer
complex questions - don’t replace traditional development practices but
rather augment them.

As you progress through this guide, you’ll notice references to how AI as-
sistants can support various aspects of the development process. Whether
generating boilerplate code, suggesting test cases, or helping troubleshoot
complex errors, these tools represent a significant shift in how developers
work. While AI assistance brings substantial benefits, it works best when

2

Development Environments and Editor Choice

paired with strong fundamentals and critical evaluation - exactly the skills
this guide aims to build.

The practices we cover remain essential regardless of whether you use AI
tools. Understanding project structure, testing principles, and code qual-
ity isn’t obsolete - if anything, these fundamentals become more important
as you leverage AI to accelerate your workflow.

Yes, including a paragraph about editors in the main document would
be valuable. I suggest adding a section near the beginning of the book
(perhaps in the Introduction or early in Part 1) that acknowledges the
role of editors in the development process while emphasizing your focus
on editor-agnostic practices.

Development Environments and Editor Choice

Throughout this guide, we focus on practices and workflows that remain
consistent regardless of your chosen development environment. Whether
you prefer a full-featured IDE like PyCharm, a lightweight but extensible
editor like VS Code, or keyboard-centric tools like Vim or Emacs, the
principles we cover apply universally.

While your choice of editor can significantly impact your productivity, the
fundamental aspects of Python development—project structure, version
control, dependency management, testing, and deployment—remain con-
sistent across environments. Most modern editors provide integration with
the tools we’ll discuss, such as virtual environments, linters, formatters,
and testing frameworks. Rather than prescribing specific editor config-
urations, this guide emphasizes the underlying practices that make for
effective Python development.

For readers interested in editor-specific setups, Appendix J provides an
overview of popular Python development environments and how they in-
tegrate with the tools covered in this book. This appendix includes config-

3

Preface

uration examples for common editors and tips for maximizing productivity
in each environment.

How to Use This Guide

This guide is designed to accommodate different learning styles and experi-
ence levels. Depending on your preferences and needs, you might approach
this document in different ways:

• Sequential learners can work through Parts 1-3 in order, building
their development pipeline step by step

• Practical learners might want to jump straight to Part 4 (the
SimpleBot case study) and refer back to earlier sections as needed

• Reference-oriented learners can use the appendices and workflow
checklist as their primary resources

• Visual thinkers will find the workflow checklist particularly helpful
for understanding the big picture

While this guide focuses on Python, it’s worth noting that many of the
core principles and practices discussed—version control, testing, documen-
tation, CI/CD, code quality—apply across software development in gen-
eral. We’ve chosen to demonstrate these concepts through Python due
to its popularity and approachable syntax, but the workflow philosophy
transcends any specific language. Developers working in other languages
will find much of this guidance transferable to their environments, with
adjustments for language-specific tools.

The guide is structured into four main parts, followed by appendices for
quick reference:

• Part 1: Setting the Foundation - Covers project structure, ver-
sion control, and virtual environments

• Part 2: Advancing Your Workflow - Explores dependency man-
agement, code quality tools, testing, and type checking

4

Related Resources

• Part 3: Documentation and Deployment - Discusses documen-
tation options and CI/CD automation

• Part 4: Case Study - Building SimpleBot - Demonstrates ap-
plying these practices to a real project

• Appendices - Provide a workflow checklist, tools reference, and
glossary of terms

Whether you’re starting your first serious Python project or looking to
professionalize an existing workflow, you’ll find relevant guidance through-
out. Feel free to focus on the sections most applicable to your current
needs and revisit others as your projects evolve.

Related Resources

This guide is part of a 4-book series designed to help you master modern
software development in the AI era:

Python Step by Step with AI: Learning with AI - An innovative
programming textbook that embraces AI as a learning partner. Master
Python by learning how to think computationally and direct AI to help
you build solutions. Perfect for absolute beginners in the age of AI.

Python Jumpstart: Coding Fundamentals for the AI Era (this
book) - Learn fundamental Python with AI integration - ideal for those
who want a focused introduction to Python fundamentals

Intentional Prompting: Mastering the Human-AI Development
Process - A methodology for effective AI collaboration (human oversight
+ methodology + LLM = success)

From Zero to Production: A Practical Python Development
Pipeline - Build professional-grade Python applications with modern
tools (uv, ruff, mypy, pytest - simple but not simplistic)

5

Preface

Book Progression: Start with “Python Step by Step with AI” if you’re
a complete beginner, or jump into “Python Jumpstart” if you want a
more focused approach to Python fundamentals. Both books prepare you
for the production-focused content in “From Zero to Production,” while
“Intentional Prompting” provides the AI collaboration methodology that
enhances all your development work.

Let’s begin by setting up a solid foundation for your Python projects.

6

1. Setting the Foundation

1.1. Python Project Structure Best Practices

A well-organized project structure is the cornerstone of maintainable
Python code. Even before writing a single line of code, decisions about
how to organize your files will impact how easily you can test, document,
and expand your project.

The structure we recommend follows modern Python conventions, priori-
tizing clarity and separation of concerns:

my_project/
��� src/ # Main source code directory
� ��� my_package/ # Your actual Python package
� ��� __init__.py # Makes the directory a package
� ��� main.py # Core functionality
� ��� helpers.py # Supporting functions/classes
��� tests/ # Test suite
� ��� __init__.py
� ��� test_main.py # Tests for main.py
� ��� test_helpers.py # Tests for helpers.py
��� docs/ # Documentation (can start simple)
� ��� index.md # Main documentation page
��� .gitignore # Files to exclude from Git
��� README.md # Project overview and quick start
��� requirements.txt # Project dependencies
��� pyproject.toml # Tool configuration

7

1. Setting the Foundation

1.1.1. Why Use the src Layout?

The src layout (placing your package inside a src directory rather than
at the project root) provides several advantages:

1. Enforces proper installation: When developing, you must install
your package to use it, ensuring you’re testing the same way users
will experience it.

2. Prevents accidental imports: You can’t accidentally import from
your project without installing it, avoiding confusing behaviors.

3. Clarifies package boundaries: Makes it explicit which code is
part of your distributable package.

While simpler projects might skip this layout, adopting it early builds
good habits and makes future growth easier.

1.1.2. Key Components Explained

• src/my_package/: Contains your actual Python code. The pack-
age name should be unique and descriptive.

• tests/: Keeps tests separate from implementation but adjacent in
the repository.

• docs/: Houses documentation, starting simple and growing as
needed.

• .gitignore: Tells Git which files to ignore (like virtual environments,
cache files, etc.).

• README.md: The first document anyone will see—provide clear
instructions on installation and basic usage.

• requirements.txt: Lists your project’s dependencies. We’ll explore
more advanced dependency management techniques in Part 2.

• pyproject.toml: Configuration for development tools like Ruff and
mypy, following modern standards.

8

1.1. Python Project Structure Best Practices

1.1.3. Getting Started

Creating this structure is straightforward. Here’s how to initialize a basic
project:

Create the project directory
mkdir my_project && cd my_project

Create the basic structure
mkdir -p src/my_package tests docs

Initialize the Python package
touch src/my_package/__init__.py
touch src/my_package/main.py

Create initial test files
touch tests/__init__.py
touch tests/test_main.py

Create essential files
echo "# My Project\nA short description of my project." > README.md
touch requirements.in
touch pyproject.toml

Initialize Git repository
git init

1.1.4. Applications vs. Packages: Knowing Your Project Type

Understanding whether you’re building an application or a package
influences structure decisions and development priorities:

9

1. Setting the Foundation

Python Applications are end-user focused programs: - Web applica-
tions (Django/Flask projects) - Command-line tools and utilities - Desk-
top applications - Data processing scripts - Have clear entry points and
user interfaces - Often include configuration files and deployment consid-
erations

Python Packages are developer-focused libraries: - Reusable code mod-
ules (like requests or pandas) - APIs and frameworks - Plugin systems
- Focus on import interfaces and documentation - Published to PyPI for
others to use

Key Differences in Practice:

Aspect Applications Packages
Entry point main.py, CLI commands Import interfaces
Dependencies Can pin exact versions Should use flexible

ranges
Documentation User guides, deployment API docs, examples
Testing focus End-to-end workflows Unit tests, edge cases
Configuration Settings files, env vars Initialization

parameters

Most projects start as applications and may later extract reusable
components into packages. Our recommended structure accommodates
both paths—you can begin with application-focused development and nat-
urally evolve toward package-like modularity as your codebase matures.

Practical example: A data analysis script (application) might extract
its core algorithms into a separate analytics package, while keeping the
command-line interface and configuration handling in the main applica-
tion.

This structure promotes maintainability and follows Python’s conventions.
It might seem like overkill for tiny scripts, but as your project grows, you’ll
appreciate having this organization from the start.

10

1.2. Version Control Fundamentals

In the next section, we’ll build on this foundation by implementing version
control best practices.

1.2. Version Control Fundamentals

Version control is an essential part of modern software development, and
Git has become the de facto standard. Even for small solo projects, proper
version control offers invaluable benefits for tracking changes, experiment-
ing safely, and maintaining a clear history of your work.

1.2.1. Setting Up Git

If you haven’t set up Git yet, here’s how to get started:

Configure your identity (use your actual name and email)
git config --global user.name "Your Name"
git config --global user.email "your.email@example.com"

Initialize Git in your project (if not done already)
git init

Create a .gitignore file to exclude unnecessary files

A good .gitignore file is essential for Python projects. Here’s a simplified
version to start with:

Virtual environments
.venv/
venv/
env/

11

1. Setting the Foundation

Python cache files
__pycache__/
*.py[cod]
*$py.class
.pytest_cache/

Distribution / packaging
dist/
build/
*.egg-info/

Local development settings
.env
.vscode/
.idea/

Coverage reports
htmlcov/
.coverage

Generated documentation
site/

1.2.2. Basic Git Workflow

For beginners, a simple Git workflow is sufficient:

1. Make changes to your code
2. Stage changes you want to commit
3. Commit with a meaningful message
4. Push to a remote repository (like GitHub)

Here’s what this looks like in practice:

12

1.2. Version Control Fundamentals

Check what files you've changed
git status

Stage specific files (or use git add . for all changes)
git add src/my_package/main.py tests/test_main.py

Commit changes with a descriptive message
git commit -m "Add user authentication function and tests"

Push to a remote repository (if using GitHub or similar)
git push origin main

1.2.3. Effective Commit Messages

Good commit messages are vital for understanding project history. Follow
these simple guidelines:

1. Use the imperative mood (“Add feature” not “Added feature”)
2. Keep the first line under 50 characters as a summary
3. When needed, add more details after a blank line
4. Explain why a change was made, not just what changed

Example of a good commit message:

Add password validation function

- Implements minimum length of 8 characters
- Requires at least one special character
- Fixes #42 (weak password vulnerability)

13

1. Setting the Foundation

1.2.4. Branching for Features and Fixes

As your project grows, a branching workflow helps manage different
streams of work:

Create a new branch for a feature
git checkout -b feature/user-profiles

Make changes, commit, and push to the branch
git add .
git commit -m "Add user profile page"
git push origin feature/user-profiles

When ready, merge back to main (after review)
git checkout main
git merge feature/user-profiles

For team projects, consider using pull/merge requests on platforms like
GitHub or GitLab rather than direct merges to the main branch. This
enables code review and discussion before changes are incorporated.

1.2.5. Integrating with GitHub or GitLab

Hosting your repository on GitHub, GitLab, or similar services provides:

1. A backup of your code
2. Collaboration tools (issues, pull requests)
3. Integration with CI/CD services
4. Visibility for your project

To connect your local repository to GitHub:

14

1.3. Virtual Environments and Basic Dependencies

After creating a repository on GitHub
git remote add origin https://github.com/yourusername/my_project.git
git branch -M main
git push -u origin main

1.2.6. Git Best Practices for Beginners

1. Commit frequently: Small, focused commits are easier to under-
stand and review

2. Never commit sensitive data: Passwords, API keys, etc. should
never enter your repository

3. Pull before pushing: Always integrate others’ changes before
pushing your own

4. Use meaningful branch names: Names like feature/user-login
or fix/validation-bug explain the purpose

Version control may seem like an overhead for very small projects, but
establishing these habits early will pay dividends as your projects grow in
size and complexity. It’s much easier to start with good practices than to
retrofit them later.

In the next section, we’ll set up a virtual environment and explore basic
dependency management to isolate your project and manage its require-
ments.

1.3. Virtual Environments and Basic Dependencies

Python’s flexibility with packages and imports is powerful, but can quickly
lead to conflicts between projects. Virtual environments solve this problem
by creating isolated spaces for each project’s dependencies.

15

1. Setting the Foundation

1.3.1. Understanding Virtual Environments

A virtual environment is an isolated copy of Python with its own packages,
separate from your system Python installation. This isolation ensures:

• Different projects can use different versions of the same package
• Installing a package for one project won’t affect others
• Your development environment closely matches production

1.3.2. Setting Up a Virtual Environment with venv

Python comes with venv built in, making it the simplest way to create
virtual environments:

Create a virtual environment named ".venv" in your project
python -m venv .venv

Activate the environment (the command differs by platform)
On Windows:
.venv\Scripts\activate
On macOS/Linux:
source .venv/bin/activate

Your prompt should change to indicate the active environment
(venv) $

Once activated, any packages you install will be confined to this environ-
ment. When you’re done working on the project, you can deactivate the
environment:

deactivate

16

1.3. Virtual Environments and Basic Dependencies

Tip: Using .venv as the environment name (with the leading
dot) makes it hidden in many file browsers, reducing clutter.
Make sure .venv/ is in your .gitignore file - you never want
to commit this directory.

1.3.3. Basic Dependency Management

With your virtual environment active, you can install packages using
pip:

Install a specific package
pip install requests

Install multiple packages
pip install pytest black

When working on a team project or deploying to production, you’ll need to
track and share these dependencies. For basic projects, you can manually
maintain a requirements.txt file with the packages you need:

Create or add packages to your requirements.txt file
echo "requests" >> requirements.txt
echo "pytest" >> requirements.txt

Install from your requirements file
pip install -r requirements.txt

This approach works well for simple projects, especially when you’re just
getting started. However, as we’ll see in Part 2, there are limitations to
this basic method:

• It doesn’t handle indirect dependencies (dependencies of your depen-
dencies) automatically

17

1. Setting the Foundation

• It doesn’t distinguish between your project’s requirements and de-
velopment tools

• It doesn’t provide version locking for reproducible environments

Looking Ahead: In Part 2, we’ll explore more robust depen-
dency management with tools like pip-tools and uv, which solve
these limitations by creating proper “lock files” while maintain-
ing a clean list of direct dependencies. We’ll also see how these
tools help ensure deterministic builds - a crucial feature as your
projects grow in complexity.

1.3.4. Practical Example: Setting Up a New Project

Let’s combine what we’ve learned so far with a practical example. Here’s
how to set up a new project with good practices:

Create project structure
mkdir -p my_project/src/my_package my_project/tests
cd my_project

Initialize Git repository
git init
echo "*.pyc\n__pycache__/\n.venv/\n*.egg-info/" > .gitignore

Create basic files
echo "# My Project\n\nA description of my project." > README.md
touch src/my_package/__init__.py
touch src/my_package/main.py
touch tests/__init__.py
touch tests/test_main.py
touch requirements.in

Create and activate virtual environment

18

1.4. Jumpstarting Your Projects with Templates

python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate

Install initial dependencies
pip install pytest
echo "pytest" > requirements.txt

Initial Git commit
git add .
git commit -m "Initial project setup"

1.4. Jumpstarting Your Projects with Templates

Now that we’ve covered the essential foundation for Python development,
you might be wondering how to apply these practices efficiently when
starting new projects. Rather than recreating this structure manually
each time, we offer two approaches to jumpstart your projects:

1.4.1. Simple Scaffolding Script

For those who prefer a transparent, straightforward approach, we’ve cre-
ated a simple bash script that creates the basic project structure we’ve
discussed:

Download the script
curl -O https://example.com/scaffold_python_project.sh
chmod +x scaffold_python_project.sh

Create a new project
./scaffold_python_project.sh my_project

19

1. Setting the Foundation

This script creates a minimal but well-structured Python project with: -
The recommended src layout - Basic test setup - Simple pyproject.toml
configuration - Version control initialization - Placeholder documenta-
tion

The script is intentionally simple and readable, allowing you to understand
exactly what’s happening and modify it for your specific needs. This ap-
proach is ideal for learning or for smaller projects where you want maxi-
mum visibility into the setup process.

1.4.2. Cookiecutter Template (For More Comprehensive Setup)

For more complex projects or when you want a more feature-rich starting
point, we also provide a cookiecutter template that implements the full
development pipeline described throughout this book:

Install cookiecutter
pip install cookiecutter

Create a new project from the template
cookiecutter gh:username/python-dev-pipeline-cookiecutter

The cookiecutter template offers more customization options and includes:
- All the foundational structure from the simple script - Comprehensive
tool configurations - Optional documentation setup with MkDocs - CI/CD
workflow configurations - Advanced dependency management - Security
scanning integration

This approach is covered in detail in Appendix C and is recommended
when you’re ready to adopt more advanced practices or when working
with larger teams.

20

1.4. Jumpstarting Your Projects with Templates

1.4.3. GitHub Repository Templates (For No-Installation
Simplicity)

For the ultimate in simplicity, we also provide a GitHub repository tem-
plate that requires no local tool installation. GitHub templates offer a
frictionless way to create new projects with the same structure and files:

1. Visit the template repository at https://github.com/username/python-
project-template

2. Click the “Use this template” button
3. Name your new repository and create it
4. Clone your new repository locally

git clone https://github.com/yourusername/your-new-project.git
cd your-new-project

While GitHub templates don’t offer the same parameterization as
cookiecutter (file contents remain exactly as they were in the template),
they provide the lowest barrier to entry for getting started with a
well-structured project. After creating your repository from the template,
you can manually customize file contents like project name, author
information, and other details.

The GitHub template includes: - The recommended src layout - Basic
test structure - .gitignore and pyproject.toml configuration - Docu-
mentation structure - Example code and tests

This approach is ideal for quickly starting new projects when you don’t
want to install additional tools or when you’re introducing others to
Python best practices with minimal setup overhead.

All these options—the simple script, the cookiecutter template—embody,
and GitHub repository templates embody our philosophy of “Simple but
not Simplistic.” Choose the option that best fits your current needs and
comfort level. As your projects grow in complexity, you can gradually

21

1. Setting the Foundation

adopt more sophisticated practices while maintaining the solid foundation
established here.

In Part 2, we’ll build on this foundation by exploring robust dependency
management, code quality tools, testing strategies, and type checking—the
next layers in our Python development pipeline.

22

2. Advancing Your Workflow

2.1. Robust Dependency Management with pip-tools
and uv

As your projects grow in complexity or involve more developers, the ba-
sic pip freeze > requirements.txt approach starts to show limitations.
You need a dependency management system that gives you more control
and ensures truly reproducible environments.

2.1.1. The Problem with pip freeze

While pip freeze is convenient, it has several drawbacks:

1. No distinction between direct and indirect dependencies:
You can’t easily tell which packages you explicitly need versus those
that were installed as dependencies of other packages.

2. Maintenance challenges: When you want to update a package,
you may need to regenerate the entire requirements file, potentially
changing packages you didn’t intend to update.

3. No environment synchronization: Installing from a require-
ments.txt file adds packages but doesn’t remove packages that are
no longer needed.

4. No explicit dependency specification: You can’t easily specify
version ranges (e.g., “I need any Django 4.x version”) or extras.

23

2. Advancing Your Workflow

Let’s explore two powerful solutions: pip-tools and uv.

2.1.2. Solution 1: pip-tools

pip-tools introduces a two-file approach to dependency management:

1. requirements.in: A manually maintained list of your direct depen-
dencies, potentially with version constraints.

2. requirements.txt: A generated lock file containing exact versions
of all dependencies (direct and indirect).

2.1.2.1. Getting Started with pip-tools

Install pip-tools in your virtual environment
pip install pip-tools

Create a requirements.in file with your direct dependencies
cat > requirements.in << EOF
requests>=2.25.0 # Use any version 2.25.0 or newer
flask==2.0.1 # Use exactly this version
pandas # Use any version
EOF

Compile the lock file
pip-compile requirements.in

Install the exact dependencies
pip-sync requirements.txt

The generated requirements.txt will contain exact versions of your spec-
ified packages plus all their dependencies, including hashes for security.

24

2.1. Robust Dependency Management with pip-tools and uv

2.1.2.2. Managing Development Dependencies

For a cleaner setup, you can separate production and development depen-
dencies:

Create requirements-dev.in
cat > requirements-dev.in << EOF
-c requirements.txt # Constraint: use same versions as in requirements.txt
pytest>=7.0.0
pytest-cov
ruff
mypy
EOF

Compile development dependencies
pip-compile requirements-dev.in -o requirements-dev.txt

Install all dependencies (both prod and dev)
pip-sync requirements.txt requirements-dev.txt

2.1.2.3. Updating Dependencies

When you need to update packages:

Update all packages to their latest allowed versions
pip-compile --upgrade requirements.in

Update a specific package
pip-compile --upgrade-package requests requirements.in

After updating, sync your environment
pip-sync requirements.txt

25

2. Advancing Your Workflow

2.1.3. Solution 2: uv

uv is a newer, Rust-based tool that provides significant speed improve-
ments while maintaining compatibility with existing Python packaging
standards. It combines environment management, package installation,
and dependency resolution in one tool.

2.1.3.1. Getting Started with uv

Install uv (globally with pipx or in your current environment)
pipx install uv
Or: pip install uv

Create a virtual environment (if needed)
uv venv

Activate the environment as usual
source .venv/bin/activate # On Windows: .venv\Scripts\activate

Create the same requirements.in file as above
cat > requirements.in << EOF
requests>=2.25.0
flask==2.0.1
pandas
EOF

Compile the lock file
uv pip compile requirements.in -o requirements.txt

Install dependencies
uv pip sync requirements.txt

26

2.1. Robust Dependency Management with pip-tools and uv

2.1.3.2. Key Advantages of uv

1. Speed: uv is significantly faster than standard pip and pip-tools,
especially for large dependency trees.

2. Global caching: uv implements efficient caching, reducing redun-
dant downloads across projects.

3. Consolidated tooling: Acts as a replacement for multiple tools
(pip, pip-tools, virtualenv) with a consistent interface.

4. Enhanced dependency resolution: Often provides clearer error
messages for dependency conflicts.

2.1.3.3. Managing Dependencies with uv

uv supports the same workflow as pip-tools but with different com-
mands:

For development dependencies
cat > requirements-dev.in << EOF
-c requirements.txt
pytest>=7.0.0
pytest-cov
ruff
mypy
EOF

Compile dev dependencies
uv pip compile requirements-dev.in -o requirements-dev.txt

Install all dependencies
uv pip sync requirements.txt requirements-dev.txt

27

2. Advancing Your Workflow

Update a specific package
uv pip compile --upgrade-package requests requirements.in

2.1.4. Choosing Between pip-tools and uv

Both tools solve the core problem of creating reproducible environments,
but with different tradeoffs:

Factor pip-tools uv
Speed Good Excellent

(often
10x+
faster)

Installation Simple Python package External
tool (but
simple to
install)

Maturity Well-established Newer
but
rapidly
maturing

Functionality Focused on dependency locking Broader
tool com-
bining
multiple
functions

Learning curve Minimal Minimal
(designed
for
compati-
bility)

28

2.2. Code Quality Tools with Ruff

For beginners or smaller projects, pip-tools offers a gentle introduction to
proper dependency management with minimal new concepts. For larger
projects or when speed becomes important, uv provides significant benefits
with a similar workflow.

2.1.5. Best Practices for Either Approach

Regardless of which tool you choose:

1. Commit both .in and .txt files to version control. The .in files
represent your intent, while the .txt files ensure reproducibility.

2. Use constraints carefully. Start with loose constraints (just pack-
age names) and add version constraints only when needed.

3. Regularly update dependencies to get security fixes, using
--upgrade or --upgrade-package.

4. Always use pip-sync or uv pip sync instead of pip install -r
requirements.txt to ensure your environment exactly matches the
lock file.

In the next section, we’ll explore how to maintain code quality through
automated formatting and linting with Ruff, taking your workflow to the
next professional level.

2.2. Code Quality Tools with Ruff

Writing code that works is only part of the development process. Code
should also be readable, maintainable, and free from common errors. This
is where code quality tools come in, helping you enforce consistent style
and catch potential issues early.

29

2. Advancing Your Workflow

2.2.1. The Evolution of Python Code Quality Tools

Traditionally, Python developers used multiple specialized tools:

• Black for code formatting
• isort for import sorting
• Flake8 for linting (style checks)
• Pylint for deeper static analysis

While effective, maintaining configuration for all these tools was cumber-
some. Enter Ruff – a modern, Rust-based tool that combines formatting
and linting in one incredibly fast package.

2.2.2. Why Ruff?

Ruff offers several compelling advantages:

1. Speed: Often 10-100x faster than traditional Python linters
2. Consolidation: Replaces multiple tools with one consistent inter-

face
3. Compatibility: Implements rules from established tools (Flake8,

Black, isort, etc.)
4. Configuration: Single configuration in your pyproject.toml file
5. Automatic fixing: Can automatically fix many issues it identifies

2.2.3. Getting Started with Ruff

First, install Ruff in your virtual environment:

If using pip
pip install ruff

30

2.2. Code Quality Tools with Ruff

If using uv
uv pip install ruff

2.2.4. Basic Configuration

Configure Ruff in your pyproject.toml file:

[tool.ruff]
Enable pycodestyle, Pyflakes, isort, and more
select = ["E", "F", "I"]
ignore = []

Allow lines to be as long as 100 characters
line-length = 100

Assume Python 3.10
target-version = "py310"

[tool.ruff.format]
Formats code similar to Black (this is the default)
quote-style = "double"
indent-style = "space"
line-ending = "auto"

This configuration enables: - E rules from pycodestyle (PEP 8 style guide)
- F rules from Pyflakes (logical and syntax error detection) - I rules for
import sorting (like isort)

2.2.5. Using Ruff in Your Workflow

Ruff provides two main commands:

31

2. Advancing Your Workflow

Check code for issues without changing it
ruff check .

Format code (similar to Black)
ruff format .

To automatically fix issues that Ruff can solve:

Fix all auto-fixable issues
ruff check --fix .

2.2.6. Hands-on: Setting Up Ruff Step-by-Step

Let’s walk through a practical example that demonstrates Ruff’s impact
on code quality. Starting with some intentionally messy Python code:

example.py - Before Ruff
import sys,os
from pathlib import Path
import json

def calculate_average(numbers:list)->float:
return sum(numbers)/len(numbers)

if __name__=='__main__':
data=[1,2,3,4,5]
result=calculate_average(data)
print(f'Average: {result}')
unused_var = 42

This code has several quality issues: - Multiple imports on one line - Incon-
sistent spacing around operators - Missing spaces in type hints - Unused
imports and variables - Inconsistent string quote styles

32

2.2. Code Quality Tools with Ruff

First, add Ruff to your project:

Add Ruff as a development dependency
uv add --dev ruff

Now configure Ruff in your pyproject.toml:

[tool.ruff]
target-version = "py39"
line-length = 88

[tool.ruff.lint]
Enable essential rule sets
select = ["E", "F", "I", "W", "B"]
ignore = ["E501"] # Line length handled by formatter

[tool.ruff.format]
quote-style = "double"

Run Ruff to identify issues:

uv run ruff check example.py

This will show output like:

example.py:2:1: E401 Multiple imports on one line
example.py:2:8: F401 `sys` imported but unused
example.py:4:1: F401 `json` imported but unused
example.py:15:5: F841 Local variable `unused_var` is assigned to but never used

Apply automatic fixes:

33

2. Advancing Your Workflow

uv run ruff check --fix example.py
uv run ruff format example.py

After running both commands, your code becomes:

example.py - After Ruff
import os
from pathlib import Path

def calculate_average(numbers: list) -> float:
return sum(numbers) / len(numbers)

if __name__ == "__main__":
data = [1, 2, 3, 4, 5]
result = calculate_average(data)
print(f"Average: {result}")

Notice the improvements: - Unused imports automatically removed - Im-
ports properly sorted and formatted - Consistent spacing around operators
and type hints - Proper string quote style - Clean, readable formatting

2.2.7. Integrating Ruff with Pre-commit Hooks

To automatically apply these fixes before each commit, add this to your
.pre-commit-config.yaml:

repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.11
hooks:

34

2.2. Code Quality Tools with Ruff

- id: ruff
args: [--fix]

- id: ruff-format

Install and activate the hooks:

uv add --dev pre-commit
uv run pre-commit install

Now Ruff will automatically clean up your code before each commit, en-
suring consistent quality across your entire project.

2.2.8. Real-world Configuration Example

Here’s a more comprehensive configuration that balances strictness with
practicality:

[tool.ruff]
Target Python version
target-version = "py39"
Line length
line-length = 88

Enable a comprehensive set of rules
select = [

"E", # pycodestyle errors
"F", # pyflakes
"I", # isort
"W", # pycodestyle warnings
"C90", # mccabe complexity
"N", # pep8-naming
"B", # flake8-bugbear

35

2. Advancing Your Workflow

"UP", # pyupgrade
"D", # pydocstyle

]

Ignore specific rules
ignore = [

"E203", # Whitespace before ':' (handled by formatter)
"D100", # Missing docstring in public module
"D104", # Missing docstring in public package

]

Exclude certain files/directories from checking
exclude = [

".git",
".venv",
"__pycache__",
"build",
"dist",

]

[tool.ruff.pydocstyle]
Use Google-style docstrings
convention = "google"

[tool.ruff.mccabe]
Maximum McCabe complexity allowed
max-complexity = 10

[tool.ruff.format]
Formatting options (black-compatible by default)
quote-style = "double"

36

2.2. Code Quality Tools with Ruff

2.2.9. Integrating Ruff into Your Editor

Ruff provides editor integrations for:

• VS Code (via the Ruff extension)
• PyCharm (via third-party plugin)
• Vim/Neovim
• Emacs

For example, in VS Code, install the Ruff extension and add to your
settings.json:

{
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {

"source.fixAll.ruff": true,
"source.organizeImports.ruff": true

}
}

This configuration automatically formats code and fixes issues whenever
you save a file.

2.2.10. Gradually Adopting Ruff

If you’re working with an existing codebase, you can adopt Ruff gradu-
ally:

1. Start with formatting only: Begin with ruff format to establish
consistent formatting

2. Add basic linting: Enable a few rule sets like E, F, and I
3. Gradually increase strictness: Add more rule sets as your team

adjusts

37

2. Advancing Your Workflow

4. Use per-file ignores: For specific issues in specific files

[tool.ruff.per-file-ignores]
"tests/*" = ["D103"] # Ignore missing docstrings in tests
"__init__.py" = ["F401"] # Ignore unused imports in __init__.py

2.2.11. Enforcing Code Quality in CI

Add Ruff to your CI pipeline to ensure code quality standards are main-
tained:

In your GitHub Actions workflow (.github/workflows/ci.yml)
- name: Check formatting with Ruff

run: ruff format --check .

- name: Lint with Ruff
run: ruff check .

The --check flag on ruff format makes it exit with an error if files would
be reformatted, instead of actually changing them.

2.2.12. Beyond Ruff: When to Consider Other Tools

While Ruff covers a wide range of code quality checks, some specific needs
might require additional tools:

• mypy for static type checking (covered in a later section)
• bandit for security-focused checks
• vulture for finding dead code

38

2.3. Automated Testing with pytest

However, Ruff’s rule set continues to expand, potentially reducing the need
for these additional tools over time.

By incorporating Ruff into your workflow, you’ll catch many common er-
rors before they reach production and maintain a consistent, readable code-
base. In the next section, we’ll explore how to ensure your code works as
expected through automated testing with pytest.

2.3. Automated Testing with pytest

Testing is a crucial aspect of software development that ensures your code
works as intended and continues to work as you make changes. Python’s
testing ecosystem offers numerous frameworks, but pytest has emerged as
the most popular and powerful choice for most projects.

2.3.1. Why Testing Matters

Automated tests provide several key benefits:

1. Verification: Confirm that your code works as expected
2. Regression prevention: Catch when changes break existing func-

tionality
3. Documentation: Tests demonstrate how code is meant to be used
4. Refactoring confidence: Change code structure while ensuring

behavior remains correct
5. Design feedback: Difficult-to-test code often indicates design prob-

lems

2.3.2. Getting Started with pytest

Add pytest as a development dependency to your project:

39

2. Advancing Your Workflow

Using uv (recommended for our toolchain)
uv add --dev pytest pytest-cov

Or using pip-tools, add to requirements-dev.in:
pytest>=7.0.0
pytest-cov

2.3.3. Setting Up a Testing Project Structure

Create a proper test directory structure in your project:

From your project root
mkdir -p tests
touch tests/__init__.py
touch tests/conftest.py # pytest configuration file

Your project structure should look like:

my-project/
��� src/
� ��� my_package/
� ��� __init__.py
� ��� calculations.py
��� tests/
� ��� __init__.py
� ��� conftest.py
� ��� test_calculations.py
��� pyproject.toml

40

2.3. Automated Testing with pytest

2.3.4. Writing Your First Test

Let’s assume you have a simple function in src/my_package/calculations.py:

def add(a, b):
"""Add two numbers and return the result."""
return a + b

Create a test file in tests/test_calculations.py:

from my_package.calculations import add

def test_add():
Test basic addition
assert add(1, 2) == 3

Test with negative numbers
assert add(-1, 1) == 0
assert add(-1, -1) == -2

Test with floating point
assert add(1.5, 2.5) == 4.0

2.3.5. Running Tests

Run all tests from your project root:

Run all tests
pytest

Run with more detail
pytest -v

41

2. Advancing Your Workflow

Run a specific test file
pytest tests/test_calculations.py

Run a specific test function
pytest tests/test_calculations.py::test_add

2.3.6. pytest Features That Make Testing Easier

pytest has several features that make it superior to Python’s built-in
unittest framework:

2.3.6.1. 1. Simple Assertions

Instead of methods like assertEqual or assertTrue, pytest lets you use
Python’s built-in assert statement, making tests more readable.

With pytest
assert result == expected

Instead of unittest's
self.assertEqual(result, expected)

2.3.6.2. 2. Fixtures

Fixtures are a powerful way to set up preconditions for your tests:

import pytest
from my_package.database import Database

@pytest.fixture

42

2.3. Automated Testing with pytest

def db():
"""Provide a clean database instance for tests."""
db = Database(":memory:") # Use in-memory SQLite
db.create_tables()
yield db
db.close() # Cleanup happens after the test

def test_save_record(db):
The db fixture is automatically provided
record = {"id": 1, "name": "Test"}
db.save(record)
assert db.get(1) == record

2.3.6.3. 3. Parameterized Tests

Test multiple inputs without repetitive code:

import pytest
from my_package.calculations import add

@pytest.mark.parametrize("a, b, expected", [
(1, 2, 3),
(-1, 1, 0),
(0, 0, 0),
(1.5, 2.5, 4.0),

])
def test_add_parametrized(a, b, expected):

assert add(a, b) == expected

2.3.6.4. 4. Marks for Test Organization

Organize tests with marks:

43

2. Advancing Your Workflow

@pytest.mark.slow
def test_complex_calculation():

This test takes a long time
...

Run only tests marked as 'slow'
pytest -m slow

@pytest.mark.skip(reason="Feature not implemented yet")
def test_future_feature():

...

@pytest.mark.xfail(reason="Known bug #123")
def test_buggy_function():

...

2.3.7. Test Coverage

Track which parts of your code are tested using pytest-cov:

Run tests with coverage report
pytest --cov=src/my_package

Generate HTML report for detailed analysis
pytest --cov=src/my_package --cov-report=html
Then open htmlcov/index.html in your browser

A coverage report helps identify untested code:

----------- coverage: platform linux, python 3.9.5-final-0 -----------
Name Stmts Miss Cover
--

44

2.3. Automated Testing with pytest

src/my_package/__init__.py 1 0 100%
src/my_package/calculations.py 10 2 80%
src/my_package/models.py 45 15 67%
--
TOTAL 56 17 70%

2.3.8. Configuring pytest for Your Project

Set up pytest configuration in your pyproject.toml to customize default
behavior:

[tool.pytest.ini_options]
Test discovery paths
testpaths = ["tests"]

Default options (applied to every pytest run)
addopts = [

"--cov=src", # Enable coverage for src directory
"--cov-report=term-missing", # Show missing lines in terminal
"--cov-report=html", # Generate HTML coverage report
"--strict-markers", # Require all markers to be defined
"--disable-warnings", # Suppress warnings for cleaner output

]

Define custom test markers
markers = [

"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"integration: marks tests as integration tests",
"unit: marks tests as unit tests",

]

Minimum coverage percentage (tests fail if below this)
addopts = ["--cov=src", "--cov-fail-under=80"]

45

2. Advancing Your Workflow

This configuration provides several benefits:

1. Automatic coverage: Every test run includes coverage reporting
2. Clean output: Suppresses unnecessary warnings while still showing

errors
3. Test organization: Markers help categorize and selectively run

tests
4. Consistent behavior: Same settings for all developers

With this configuration, running uv run pytest automatically: - Discov-
ers tests in the tests/ directory - Calculates code coverage for your src/
directory - Generates both terminal and HTML coverage reports - Applies
your chosen settings consistently

2.3.9. Testing Best Practices

1. Write tests as you develop: Don’t wait until the end
2. Name tests clearly: Include the function name and scenario being

tested
3. One assertion per test: Focus each test on a single behavior
4. Test edge cases: Empty input, boundary values, error conditions
5. Avoid test interdependence: Tests should work independently
6. Mock external dependencies: APIs, databases, file systems
7. Keep tests fast: Slow tests get run less often

2.3.10. Common Testing Patterns

2.3.10.1. Testing Exceptions

Verify that your code raises the right exceptions:

46

2.3. Automated Testing with pytest

import pytest
from my_package.validate import validate_username

def test_validate_username_too_short():
with pytest.raises(ValueError) as excinfo:

validate_username("ab") # Too short
assert "Username must be at least 3 characters" in str(excinfo.value)

2.3.10.2. Testing with Temporary Files

Test file operations safely:

def test_save_to_file(tmp_path):
tmp_path is a built-in pytest fixture
file_path = tmp_path / "test.txt"

Test file writing
save_to_file(file_path, "test content")

Verify content
assert file_path.read_text() == "test content"

2.3.10.3. Mocking

Isolate your code from external dependencies using the pytest-mock plu-
gin:

def test_fetch_user_data(mocker):
Mock the API call
mock_response = mocker.patch('requests.get')
mock_response.return_value.json.return_value = {"id": 1, "name": "Test User"}

47

2. Advancing Your Workflow

Test our function
from my_package.api import get_user
user = get_user(1)

Verify results
assert user['name'] == "Test User"
mock_response.assert_called_once_with('https://api.example.com/users/1')

2.3.11. Testing Strategy

As your project grows, organize tests into different categories:

1. Unit tests: Test individual functions/classes in isolation
2. Integration tests: Test interactions between components
3. Functional tests: Test entire features from a user perspective

Most projects should have a pyramid shape: many unit tests, fewer inte-
gration tests, and even fewer functional tests.

2.3.12. Continuous Testing

Make testing a habitual part of your workflow:

1. Run relevant tests as you code: Many editors integrate with
pytest

2. Run full test suite before committing: Use pre-commit hooks
3. Run tests in CI: Catch issues that might only appear in different

environments

By incorporating comprehensive testing into your development process,
you’ll catch bugs earlier, ship with more confidence, and build a more
maintainable codebase.

48

2.4. Type Checking with mypy

In the next section, we’ll explore static type checking with mypy, which can
help catch a whole new category of errors before your code even runs.

2.4. Type Checking with mypy

Python is dynamically typed, which provides flexibility but can also lead
to type-related errors that only appear at runtime. Static type checking
with mypy adds an extra layer of verification, catching many potential
issues before your code executes.

2.4.1. Understanding Type Hints

Python 3.5+ supports type hints, which are annotations indicating what
types of values functions expect and return:

def greeting(name: str) -> str:
return f"Hello, {name}!"

These annotations don’t change how Python runs—they’re ignored by the
interpreter at runtime. However, tools like mypy can analyze them stati-
cally to catch potential type errors.

2.4.2. Getting Started with mypy

First, install mypy in your development environment:

pip install mypy

Let’s check a simple example:

49

2. Advancing Your Workflow

example.py
def double(x: int) -> int:

return x * 2

This is fine
result = double(5)

This would fail at runtime
double("hello")

Run mypy to check:

mypy example.py

Output:

example.py:8: error: Argument 1 to "double" has incompatible type "str"; expected "int"

mypy caught the type mismatch without running the code!

2.4.3. Configuring mypy

Configure mypy in your pyproject.toml file for a consistent experience:

[tool.mypy]
python_version = "3.9"
warn_return_any = true
warn_unused_configs = true
disallow_untyped_defs = false
disallow_incomplete_defs = false

50

2.4. Type Checking with mypy

Start with a lenient configuration and gradually increase strictness:

Starting configuration: permissive but helpful
[tool.mypy]
python_version = "3.9"
warn_return_any = true
check_untyped_defs = true
disallow_untyped_defs = false

Intermediate configuration: more rigorous
[tool.mypy]
python_version = "3.9"
warn_return_any = true
disallow_incomplete_defs = true
disallow_untyped_defs = false
check_untyped_defs = true

Strict configuration: full typing required
[tool.mypy]
python_version = "3.9"
disallow_untyped_defs = true
disallow_incomplete_defs = true
no_implicit_optional = true
warn_redundant_casts = true
warn_unused_ignores = true
warn_return_any = true
warn_unreachable = true

2.4.4. Gradual Typing

One major advantage of Python’s type system is gradual typing—you can
add types incrementally:

51

2. Advancing Your Workflow

1. Start with critical or error-prone modules
2. Add types to public interfaces first
3. Increase type coverage over time

2.4.5. Essential Type Annotations

2.4.5.1. Basic Types

Variables
name: str = "Alice"
age: int = 30
height: float = 1.75
is_active: bool = True

Lists, sets, and dictionaries
names: list[str] = ["Alice", "Bob"]
unique_ids: set[int] = {1, 2, 3}
user_scores: dict[str, int] = {"Alice": 100, "Bob": 85}

2.4.5.2. Function Annotations

def calculate_total(prices: list[float], tax_rate: float = 0.0) -> float:
"""Calculate the total price including tax."""
subtotal = sum(prices)
return subtotal * (1 + tax_rate)

2.4.5.3. Class Annotations

52

2.4. Type Checking with mypy

from typing import Optional

class User:
def __init__(self, name: str, email: str, age: Optional[int] = None):

self.name: str = name
self.email: str = email
self.age: Optional[int] = age

def is_adult(self) -> bool:
"""Check if user is an adult."""
return self.age is not None and self.age >= 18

2.4.6. Advanced Type Hints

2.4.6.1. Union Types

Use Union to indicate multiple possible types (use the | operator in Python
3.10+):

from typing import Union

Python 3.9 and earlier
def process_input(data: Union[str, list[str]]) -> str:

if isinstance(data, list):
return ", ".join(data)

return data

Python 3.10+
def process_input(data: str | list[str]) -> str:

if isinstance(data, list):
return ", ".join(data)

return data

53

2. Advancing Your Workflow

2.4.6.2. Optional and None

Optional[T] is equivalent to Union[T, None] or T | None:

from typing import Optional

def find_user(user_id: int) -> Optional[dict]:
"""Return user data or None if not found."""
Implementation...

2.4.6.3. Type Aliases

Create aliases for complex types:

from typing import Dict, List, Tuple

Complex type
TransactionRecord = Tuple[str, float, str, Dict[str, str]]

More readable with alias
def process_transactions(transactions: List[TransactionRecord]) -> float:

total = 0.0
for _, amount, _, _ in transactions:

total += amount
return total

2.4.6.4. Callable

Type hint for functions:

54

2.4. Type Checking with mypy

from typing import Callable

def apply_function(func: Callable[[int], str], value: int) -> str:
"""Apply a function that converts int to str."""
return func(value)

2.4.7. Common Challenges and Solutions

2.4.7.1. Working with Third-Party Libraries

Not all libraries provide type hints. For popular packages, you can often
find stub files:

pip install types-requests

For others, you can silence mypy warnings selectively:

import untyped_library # type: ignore

2.4.7.2. Dealing with Dynamic Features

Python’s dynamic features can be challenging to type. Use Any when
necessary:

from typing import Any, Dict

def parse_config(config: Dict[str, Any]) -> Dict[str, Any]:
"""Parse configuration with unknown structure."""
Implementation...

55

2. Advancing Your Workflow

2.4.8. Integration with Your Workflow

2.4.8.1. Running mypy

Check a specific file
mypy src/my_package/module.py

Check the entire package
mypy src/my_package/

Use multiple processes for faster checking
mypy -p my_package --python-version 3.9 --multiprocessing

2.4.8.2. Integrating with CI/CD

Add mypy to your continuous integration workflow:

GitHub Actions example
- name: Type check with mypy

run: mypy src/

2.4.8.3. Editor Integration

Most Python-friendly editors support mypy:

• VS Code: Use the Pylance extension
• PyCharm: Has built-in type checking
• vim/neovim: Use ALE or similar plugins

56

2.4. Type Checking with mypy

2.4.9. The Broader Type Checking Landscape

While mypy remains the most widely adopted and beginner-friendly type
checker, Python’s type checking ecosystem is rapidly evolving. Other no-
table options include:

• pyright/pylance: Microsoft’s fast, strict type checker that powers
VS Code’s Python extension

• basedmypy: A mypy fork with stricter defaults and additional fea-
tures

• basedpyright: An even more aggressive fork of pyright
• ty: Astral’s upcoming type checker (from the makers of ruff and uv),

with an alpha preview expected by PyCon 2025

For learning and establishing good type annotation habits, mypy provides
an excellent foundation with extensive documentation and community sup-
port. As your expertise grows, you can explore these alternatives to find
the right balance of speed, strictness, and features for your projects.

2.4.10. Benefits of Type Checking

1. Catch errors early: Find type-related bugs before running code
2. Improved IDE experience: Better code completion and refactor-

ing
3. Self-documenting code: Types serve as documentation
4. Safer refactoring: Change code with more confidence
5. Gradual adoption: Add types where they provide the most value

2.4.11. When to Use Type Hints

Type hints are particularly valuable for:

• Functions with complex parameters or return values

57

2. Advancing Your Workflow

• Public APIs used by others
• Areas with frequent bugs
• Critical code paths
• Large codebases with multiple contributors

Type checking isn’t an all-or-nothing proposition. Even partial type cover-
age can significantly improve code quality and catch common errors. Start
small, focus on interfaces, and expand your type coverage as your team
becomes comfortable with the system.

2.5. Security Analysis with Bandit

Software security is a critical concern in modern development, yet it’s often
overlooked until problems arise. Bandit is a tool designed to find common
security issues in Python code through static analysis.

2.5.1. Understanding Security Static Analysis

Unlike functional testing or linting, security-focused static analysis looks
specifically for patterns and practices that could lead to security vulnera-
bilities:

• Injection vulnerabilities
• Use of insecure functions
• Hardcoded credentials
• Insecure cryptography
• And many other security issues

58

2.5. Security Analysis with Bandit

2.5.2. Getting Started with Bandit

First, install Bandit in your virtual environment:

pip install bandit

Run a basic scan:

Scan a specific file
bandit -r src/my_package/main.py

Scan your entire codebase
bandit -r src/

2.5.3. Security Issues Bandit Can Detect

Bandit identifies a wide range of security concerns, including:

2.5.3.1. 1. Hardcoded Secrets

Bandit will flag this
def connect_to_database():

password = "super_secret_password" # Hardcoded secret
return Database("user", password)

2.5.3.2. 2. SQL Injection

59

2. Advancing Your Workflow

Vulnerable to SQL injection
def get_user(username):

query = f"SELECT * FROM users WHERE username = '{username}'"
return db.execute(query)

Safer approach
def get_user_safe(username):

query = "SELECT * FROM users WHERE username = %s"
return db.execute(query, (username,))

2.5.3.3. 3. Shell Injection

Vulnerable to command injection
def run_command(user_input):

return os.system(f"ls {user_input}") # User could inject commands

Safer approach
import subprocess
def run_command_safe(user_input):

return subprocess.run(["ls", user_input], capture_output=True, text=True)

2.5.3.4. 4. Insecure Cryptography

Using weak hash algorithms
import hashlib
def hash_password(password):

return hashlib.md5(password.encode()).hexdigest() # MD5 is insecure

60

2.5. Security Analysis with Bandit

2.5.3.5. 5. Unsafe Deserialization

Insecure deserialization
import pickle
def load_user_preferences(data):

return pickle.loads(data) # Pickle can execute arbitrary code

2.5.4. Configuring Bandit

You can configure Bandit using a .bandit file or your pyproject.toml:

[tool.bandit]
exclude_dirs = ["tests", "docs"]
skips = ["B311"] # Skip random warning
targets = ["src"]

The most critical findings are categorized with high severity and confidence
levels:

Only report high-severity issues
bandit -r src/ -iii -ll

2.5.5. Integrating Bandit in Your Workflow

2.5.5.1. Add Bandit to CI/CD

Add security scanning to your continuous integration pipeline:

61

2. Advancing Your Workflow

GitHub Actions example
- name: Security check with Bandit

run: bandit -r src/ -f json -o bandit-results.json

Optional: convert results to GitHub Security format
(requires additional tools or post-processing)

2.5.5.2. Pre-commit Hook

Configure a pre-commit hook to run Bandit before commits:

In .pre-commit-config.yaml
- repo: https://github.com/PyCQA/bandit

rev: 1.7.5
hooks:

- id: bandit
args: ["-r", "src"]

2.5.6. Responding to Security Findings

When Bandit identifies security issues:

1. Understand the risk: Read the detailed explanation to under-
stand the potential vulnerability

2. Fix high-severity issues immediately: These represent signifi-
cant security risks

3. Document deliberate exceptions: If a finding is a false positive,
document why and use an inline ignore comment

4. Review regularly: Security standards evolve, so regular scanning
is essential

62

2.6. Finding Dead Code with Vulture

2.5.7. False Positives

Like any static analysis tool, Bandit can produce false positives. You can
exclude specific findings:

In code, to ignore a specific line
import pickle # nosec

For a whole file
nosec

Or configure globally in pyproject.toml

By incorporating security scanning with Bandit, you add an essential layer
of protection against common security vulnerabilities, helping to ensure
that your code is not just functional but also secure.

2.6. Finding Dead Code with Vulture

As projects evolve, code can become obsolete but remain in the codebase,
creating maintenance burdens and confusion. Vulture is a static analysis
tool that identifies unused code – functions, classes, and variables that are
defined but never used.

2.6.1. The Problem of Dead Code

Dead code creates several issues:

1. Maintenance overhead: Every line of code needs maintenance
2. Cognitive load: Developers need to understand code that serves

no purpose

63

2. Advancing Your Workflow

3. False security: Tests might pass while dead code goes unchecked
4. Misleading documentation: Dead code can appear in documen-

tation generators

2.6.2. Getting Started with Vulture

Install Vulture in your virtual environment:

pip install vulture

Run a basic scan:

Scan a specific file
vulture src/my_package/main.py

Scan your entire codebase
vulture src/

2.6.3. What Vulture Detects

Vulture identifies:

2.6.3.1. 1. Unused Variables

def process_data(data):
result = [] # Defined but never used
for item in data:

processed = transform(item) # Unused variable
data.append(item * 2)

return data

64

2.6. Finding Dead Code with Vulture

2.6.3.2. 2. Unused Functions

def calculate_average(numbers):
"""Calculate the average of a list of numbers."""
if not numbers:

return 0
return sum(numbers) / len(numbers)

If this function is never called anywhere, Vulture will flag it

2.6.3.3. 3. Unused Classes

class LegacyFormatter:
"""Format data using the legacy method."""
def __init__(self, data):

self.data = data

def format(self):
return json.dumps(self.data)

If this class is never instantiated, Vulture will flag it

2.6.3.4. 4. Unused Imports

import os
import sys # If sys is imported but never used
import json
from datetime import datetime, timedelta # If timedelta is never used

65

2. Advancing Your Workflow

2.6.4. Handling False Positives

Vulture can sometimes flag code that’s actually used but in ways it can’t
detect. Common cases include:

• Classes used through reflection
• Functions called in templates
• Code used in an importable public API

You can create a whitelist file to suppress these reports:

whitelist.py
unused_function # vulture:ignore

Run Vulture with the whitelist:

vulture src/ whitelist.py

2.6.5. Configuration and Integration

Add Vulture to your workflow:

2.6.5.1. Command Line Options

Set minimum confidence (default is 60%)
vulture --min-confidence 80 src/

Exclude test files
vulture src/ --exclude "test_*.py"

66

2.6. Finding Dead Code with Vulture

2.6.5.2. CI Integration

GitHub Actions example
- name: Find dead code with Vulture
run: vulture src/ --min-confidence 80

2.6.6. Best Practices for Dead Code Removal

1. Verify before removing: Confirm the code is truly unused
2. Use version control: Remove code through proper commits with

explanations
3. Update documentation: Ensure documentation reflects the

changes
4. Run tests: Confirm nothing breaks when the code is removed
5. Look for patterns: Clusters of dead code often indicate larger

architectural issues

2.6.7. When to Run Vulture

• Before major refactoring
• During codebase cleanup
• As part of regular maintenance
• When preparing for a significant release
• When onboarding new team members (helps them focus on what

matters)

Regularly checking for and removing dead code keeps your codebase lean
and maintainable. It also provides insights into how your application
has evolved and may highlight areas where design improvements could
be made.

67

2. Advancing Your Workflow

With these additional security and code quality tools in place, your Python
development workflow is now even more robust. Let’s move on to Part 3,
where we’ll explore documentation and deployment options.

68

3. Documentation and Deployment

3.1. Documentation Options: From pydoc to
MkDocs

Documentation is often neglected in software development, yet it’s crucial
for ensuring others (including your future self) can understand and use
your code effectively. Python offers a spectrum of documentation options,
from simple built-in tools to sophisticated documentation generators.

3.1.1. Starting Simple with Docstrings

The foundation of Python documentation is the humble docstring - a string
literal that appears as the first statement in a module, function, class, or
method:

def calculate_discount(price: float, discount_percent: float) -> float:
"""Calculate the discounted price.

Args:
price: The original price
discount_percent: The discount percentage (0-100)

Returns:
The price after discount

69

3. Documentation and Deployment

Raises:
ValueError: If discount_percent is negative or greater than 100

"""
if not 0 <= discount_percent <= 100:

raise ValueError("Discount percentage must be between 0 and 100")

discount = price * (discount_percent / 100)
return price - discount

Docstrings become particularly useful when following a consistent format.
Common conventions include:

• Google style (shown above)
• NumPy style (similar to Google style but with different section

headers)
• reStructuredText (used by Sphinx)

3.1.2. Viewing Documentation with pydoc

Python’s built-in pydoc module provides a simple way to access documen-
tation:

View module documentation in the terminal
python -m pydoc my_package.module

Start an HTTP server to browse documentation
python -m pydoc -b

You can also generate basic HTML documentation:

70

3.1. Documentation Options: From pydoc to MkDocs

Create HTML for a specific module
python -m pydoc -w my_package.module

Create HTML for an entire package
mkdir -p docs/html
python -m pydoc -w my_package
mv my_package*.html docs/html/

While simple, this approach has limitations: - Minimal styling - No cross-
linking between documents - Limited navigation options

For beginner projects, however, it provides a fast way to make documen-
tation available with zero dependencies.

3.1.3. Simple Script for Basic Documentation Site

For slightly more organized documentation than plain pydoc, you can
create a simple script that: 1. Generates pydoc HTML for all modules 2.
Creates a basic index.html linking to them

Here’s a minimal example script (build_docs.py):

import os
import importlib
import pkgutil
import pydoc

def generate_docs(package_name, output_dir="docs/api"):
"""Generate HTML documentation for all modules in a package."""
Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)

Import the package

71

3. Documentation and Deployment

package = importlib.import_module(package_name)

Track all modules for index page
modules = []

Walk through all modules in the package
for _, modname, ispkg in pkgutil.walk_packages(package.__path__, package_name + '.'):

try:
Generate HTML documentation
html_path = os.path.join(output_dir, modname + '.html')
with open(html_path, 'w') as f:

pydoc_output = pydoc.HTMLDoc().document(importlib.import_module(modname))
f.write(pydoc_output)

modules.append((modname, os.path.basename(html_path)))
print(f"Generated documentation for {modname}")

except ImportError as e:
print(f"Error importing {modname}: {e}")

Create index.html
index_path = os.path.join(output_dir, 'index.html')
with open(index_path, 'w') as f:

f.write("<html><head><title>API Documentation</title></head><body>\n")
f.write("<h1>API Documentation</h1>\n\n")

for modname, html_file in sorted(modules):
f.write(f'{modname}\n')

f.write("</body></html>")

print(f"Index created at {index_path}")

if __name__ == "__main__":

72

3.1. Documentation Options: From pydoc to MkDocs

Change 'my_package' to your actual package name
generate_docs('my_package')

This script generates slightly more organized documentation than raw py-
doc but still leverages built-in tools.

3.1.4. Moving to MkDocs for Comprehensive Documentation

When your project grows and needs more sophisticated documentation,
MkDocs provides an excellent balance of simplicity and features. MkDocs
generates a static site from Markdown files, making it easy to write and
maintain documentation.

3.1.4.1. Getting Started with MkDocs

First, install MkDocs and a theme:

pip install mkdocs mkdocs-material

Initialize a new documentation project:

mkdocs new .

This creates a mkdocs.yml configuration file and a docs/ directory with
an index.md file.

3.1.4.2. Basic Configuration

Edit mkdocs.yml:

73

3. Documentation and Deployment

site_name: My Project
theme:

name: material
palette:
primary: indigo
accent: indigo

nav:
- Home: index.md
- User Guide:

- Installation: user-guide/installation.md
- Getting Started: user-guide/getting-started.md

- API Reference: api-reference.md
- Contributing: contributing.md

3.1.4.3. Creating Documentation Content

MkDocs uses Markdown files for content. Create docs/user-guide/installation.md:

Installation

Prerequisites

- Python 3.8 or later
- pip package manager

Installation Steps

1. Install from PyPI:

```bash
pip install my-package

74



3.1. Documentation Options: From pydoc to MkDocs

2. Verify installation:
python -c "import my_package; print(my_package.__version__)"

“‘

3.1.4.4. Testing Documentation Locally

Preview your documentation while writing:

mkdocs serve

This starts a development server at http://127.0.0.1:8000 that automati-
cally refreshes when you update files.

3.1.4.5. Building and Deploying Documentation

Generate static HTML files:

mkdocs build

This creates a site/ directory with the HTML documentation site.

For GitHub projects, you can publish to GitHub Pages:

mkdocs gh-deploy

3.1.5. Hosting Documentation with GitHub Pages

GitHub Pages provides a simple, free hosting solution for your project
documentation that integrates seamlessly with your GitHub repository.

75



3. Documentation and Deployment

3.1.5.1. Setting Up GitHub Pages

There are two main approaches to hosting documentation on GitHub
Pages:

1. Repository site: Serves content from a dedicated branch (typically
gh-pages)

2. User/Organization site: Serves content from a special repository
named username.github.io

For most Python projects, the repository site approach works best:

1. Go to your repository on GitHub
2. Navigate to Settings → Pages
3. Under “Source”, select your branch (either main or gh-pages)
4. Choose the folder that contains your documentation (/ or /docs)
5. Click Save

Your documentation will be published at https://username.github.io/repository-name/.

3.1.5.2. Automating Documentation Deployment

MkDocs has built-in support for GitHub Pages deployment:

# Build and deploy documentation to GitHub Pages
mkdocs gh-deploy

This command: 1. Builds your documentation into the site/ directory 2.
Creates or updates the gh-pages branch 3. Pushes the built site to that
branch 4. GitHub automatically serves the content

For a fully automated workflow, integrate this into your GitHub Actions
CI pipeline:

76



3.1. Documentation Options: From pydoc to MkDocs

name: Deploy Documentation

on:
push:

branches:
- main

paths:
- 'docs/**'
- 'mkdocs.yml'

jobs:
deploy:

runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v3
- name: Set up Python

uses: actions/setup-python@v4
with:
python-version: '3.10'

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install mkdocs mkdocs-material mkdocstrings[python]

- name: Deploy documentation
run: mkdocs gh-deploy --force

This workflow automatically deploys your documentation whenever you
push changes to documentation files on the main branch.

77



3. Documentation and Deployment

3.1.5.3. GitHub Pages with pydoc

Even if you’re using the simpler pydoc approach, you can still host the
generated HTML on GitHub Pages:

1. Create a docs/ folder in your repository

2. Generate HTML documentation with pydoc:
python -m pydoc -w src/my_package/*.py
mv *.html docs/

3. Add a simple docs/index.html that links to your module documen-
tation

4. Configure GitHub Pages to serve from the docs/ folder of your main
branch

3.1.5.4. Custom Domains

For more established projects, you can use your own domain:

1. Purchase a domain from a registrar
2. Add a CNAME file to your documentation with your domain name
3. Configure your DNS settings according to GitHub’s instructions
4. Enable HTTPS in GitHub Pages settings

By hosting your documentation on GitHub Pages, you make it easily ac-
cessible to users and maintainable alongside your codebase. It’s a natural
extension of the Git-based workflow we’ve established.

78



3.1. Documentation Options: From pydoc to MkDocs

3.1.5.5. Enhancing MkDocs

MkDocs supports numerous plugins and extensions:

• Code highlighting: Built-in support for syntax highlighting
• Admonitions: Create warning, note, and info boxes
• Search: Built-in search functionality
• Table of contents: Automatic generation of section navigation

Example of enhanced configuration:

site_name: My Project
theme:
name: material
features:

- navigation.instant
- navigation.tracking
- navigation.expand
- navigation.indexes
- content.code.annotate

markdown_extensions:
- admonition
- pymdownx.highlight
- pymdownx.superfences
- toc:

permalink: true
plugins:

- search
- mkdocstrings:

handlers:
python:
selection:

docstring_style: google

79



3. Documentation and Deployment

3.1.6. Integrating API Documentation

MkDocs alone is great for manual documentation, but you can also inte-
grate auto-generated API documentation:

3.1.6.1. Using mkdocstrings

Install mkdocstrings to include docstrings from your code:

pip install mkdocstrings[python]

Update mkdocs.yml:

plugins:
- search
- mkdocstrings:

handlers:
python:

selection:
docstring_style: google

Then in your docs/api-reference.md:

# API Reference

## Module my_package.core

This module contains core functionality.

::: my_package.core
options:

show_source: false

80



3.1. Documentation Options: From pydoc to MkDocs

This automatically generates documentation from docstrings in your
my_package.core module.

3.1.7. Documentation Best Practices

Regardless of which documentation tool you choose, follow these best prac-
tices:

1. Start with a clear README: Include installation, quick start,
and basic examples

2. Document as you code: Write documentation alongside code, not
as an afterthought

3. Include examples: Show how to use functions and classes with
realistic examples

4. Document edge cases and errors: Explain what happens in
exceptional situations

5. Keep documentation close to code: Use docstrings for API
details

6. Maintain a changelog: Track major changes between versions
7. Consider different audiences: Write for both new users and ex-

perienced developers

3.1.8. Choosing the Right Documentation Approach

Approach When to Use
Docstrings only For very small, personal projects
pydoc For simple projects with minimal

documentation needs
Custom pydoc script Small to medium projects needing basic

organization
MkDocs Medium to large projects requiring

structured, attractive documentation

81



3. Documentation and Deployment

Approach When to Use
Sphinx Large, complex projects, especially with

scientific or mathematical content

For most applications, the journey often progresses from simple docstrings
to MkDocs as the project grows. By starting with good docstrings from
the beginning, you make each subsequent step easier.

In the next section, we’ll explore how to automate your workflow with
CI/CD using GitHub Actions.

3.2. CI/CD Workflows with GitHub Actions

Continuous Integration (CI) and Continuous Deployment (CD) automate
the process of testing, building, and deploying your code, ensuring quality
and consistency throughout the development lifecycle. GitHub Actions
provides a powerful and flexible way to implement CI/CD workflows di-
rectly within your GitHub repository.

3.2.1. Understanding CI/CD Basics

Before diving into implementation, let’s understand what each component
achieves:

• Continuous Integration: Automatically testing code changes
when pushed to the repository

• Continuous Deployment: Automatically deploying code to test-
ing, staging, or production environments

A robust CI/CD pipeline typically includes:

1. Running tests

82



3.2. CI/CD Workflows with GitHub Actions

2. Verifying code quality (formatting, linting)
3. Static analysis (type checking, security scanning)
4. Building documentation
5. Building and publishing packages or applications
6. Deploying to environments

3.2.2. Setting Up GitHub Actions

GitHub Actions workflows are defined using YAML files stored in the
.github/workflows/ directory of your repository. Each workflow file de-
fines a set of jobs and steps that execute in response to specified events.

Start by creating the directory structure:

mkdir -p .github/workflows

3.2.3. Basic Python CI Workflow

Let’s create a file named .github/workflows/ci.yml:

name: Python CI

on:
push:

branches: [ main ]
pull_request:

branches: [ main ]

jobs:
test:

runs-on: ubuntu-latest
strategy:

83



3. Documentation and Deployment

matrix:
python-version: ["3.8", "3.9", "3.10"]

steps:
- uses: actions/checkout@v3

- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: pip

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
pip install -r requirements-dev.txt

- name: Check formatting with Ruff
run: ruff format --check .

- name: Lint with Ruff
run: ruff check .

- name: Type check with mypy
run: mypy src/

- name: Run security checks with Bandit
run: bandit -r src/ -x tests/

- name: Test with pytest
run: pytest --cov=src/ --cov-report=xml

84



3.2. CI/CD Workflows with GitHub Actions

- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:

file: ./coverage.xml
fail_ci_if_error: true

This workflow:

1. Triggers on pushes to main and on pull requests
2. Runs on the latest Ubuntu environment
3. Tests against multiple Python versions
4. Sets up caching to speed up dependency installation
5. Runs our full suite of quality checks and tests
6. Uploads coverage reports to Codecov (if you’ve set up this integra-

tion)

3.2.4. Using Dependency Caching

To speed up your workflow, GitHub Actions provides caching capabili-
ties:

- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:

python-version: ${{ matrix.python-version }}
cache: pip # Enable pip caching

For more specific control over caching:

85



3. Documentation and Deployment

- name: Cache pip packages
uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements*.txt') }}
restore-keys: |

${{ runner.os }}-pip-

3.2.5. Adapting for Different Dependency Tools

If you’re using uv instead of pip, adjust your workflow:

- name: Install uv
run: curl -LsSf https://astral.sh/uv/install.sh | sh

- name: Install dependencies with uv
run: |
uv pip sync requirements.txt requirements-dev.txt

3.2.6. Building and Publishing Documentation

Add a job to build documentation with MkDocs:

docs:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:

86



3.2. CI/CD Workflows with GitHub Actions

python-version: "3.10"

- name: Install dependencies
run: |

python -m pip install --upgrade pip
pip install mkdocs mkdocs-material mkdocstrings[python]

- name: Build documentation
run: mkdocs build --strict

- name: Deploy to GitHub Pages
if: github.event_name == 'push' && github.ref == 'refs/heads/main'
uses: peaceiris/actions-gh-pages@v3
with:

github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./site

This job builds your documentation with MkDocs and deploys it to GitHub
Pages when changes are pushed to the main branch.

3.2.7. Building and Publishing Python Packages

For projects that produce packages, add a job for publication to PyPI:

publish:
needs: [test, docs] # Only run if test and docs jobs pass
runs-on: ubuntu-latest
# Only publish on tagged releases
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
steps:

- uses: actions/checkout@v3

87



3. Documentation and Deployment

- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"

- name: Install build dependencies
run: |
python -m pip install --upgrade pip
pip install build twine

- name: Build package
run: python -m build

- name: Check package with twine
run: twine check dist/*

- name: Publish package
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

This job: 1. Only runs after tests and documentation have passed 2. Only
triggers on tagged commits (releases) 3. Builds the package using the
build package 4. Validates the package with twine 5. Publishes to PyPI
using a secure token

You would need to add the PYPI_API_TOKEN to your repository secrets.

3.2.8. Running Tests in Multiple Environments

For applications that need to support multiple operating systems or
Python versions:

88



3.2. CI/CD Workflows with GitHub Actions

test:
runs-on: ${{ matrix.os }}
strategy:

matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python-version: ["3.8", "3.9", "3.10"]

steps:
# ... Steps as before ...

This configuration runs your tests on three operating systems with three
Python versions each, for a total of nine environments.

3.2.9. Branch Protection and Required Checks

To ensure code quality, set up branch protection rules on GitHub:

1. Go to your repository → Settings → Branches
2. Add a rule for your main branch
3. Enable “Require status checks to pass before merging”
4. Select the checks from your CI workflow

This prevents merging pull requests until all tests pass, maintaining your
code quality standards.

3.2.10. Scheduled Workflows

Run your tests on a schedule to catch issues with external dependencies:

89



3. Documentation and Deployment

on:
push:
branches: [ main ]

pull_request:
branches: [ main ]

schedule:
- cron: '0 0 * * 0' # Weekly on Sundays at midnight

3.2.11. Notifications and Feedback

Configure notifications for workflow results:

- name: Send notification
if: always()
uses: rtCamp/action-slack-notify@v2
env:
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
SLACK_TITLE: CI Result
SLACK_MESSAGE: ${{ job.status }}
SLACK_COLOR: ${{ job.status == 'success' && 'good' || 'danger' }}

This example sends notifications to Slack, but similar actions exist for
other platforms.

3.2.12. A Complete CI/CD Workflow Example

Here’s a comprehensive workflow example bringing together many of the
concepts we’ve covered:

90



3.2. CI/CD Workflows with GitHub Actions

name: Python CI/CD Pipeline

on:
push:

branches: [ main ]
tags: [ 'v*' ]

pull_request:
branches: [ main ]

schedule:
- cron: '0 0 * * 0' # Weekly on Sundays

jobs:
quality:

name: Code Quality
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
cache: pip

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements-dev.txt

- name: Check formatting
run: ruff format --check .

- name: Lint with Ruff

91



3. Documentation and Deployment

run: ruff check .

- name: Type check
run: mypy src/

- name: Security scan
run: bandit -r src/ -x tests/

- name: Check for dead code
run: vulture src/ --min-confidence 80

test:
name: Test
needs: quality
runs-on: ${{ matrix.os }}
strategy:

matrix:
os: [ubuntu-latest]
python-version: ["3.8", "3.9", "3.10"]
include:

- os: windows-latest
python-version: "3.10"

- os: macos-latest
python-version: "3.10"

steps:
- uses: actions/checkout@v3

- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:

python-version: ${{ matrix.python-version }}
cache: pip

92



3.2. CI/CD Workflows with GitHub Actions

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt -r requirements-dev.txt

- name: Test with pytest
run: pytest --cov=src/ --cov-report=xml

- name: Upload coverage
uses: codecov/codecov-action@v3
with:
file: ./coverage.xml

docs:
name: Documentation
needs: quality
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"

- name: Install docs dependencies
run: |
python -m pip install --upgrade pip
pip install mkdocs mkdocs-material mkdocstrings[python]

- name: Build docs
run: mkdocs build --strict

93



3. Documentation and Deployment

- name: Deploy docs
if: github.event_name == 'push' && github.ref == 'refs/heads/main'
uses: peaceiris/actions-gh-pages@v3
with:

github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./site

publish:
name: Publish Package
needs: [test, docs]
runs-on: ubuntu-latest
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
steps:

- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:

python-version: "3.10"

- name: Install build dependencies
run: |

python -m pip install --upgrade pip
pip install build twine

- name: Build package
run: python -m build

- name: Check package
run: twine check dist/*

- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

94



3.2. CI/CD Workflows with GitHub Actions

with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

- name: Create GitHub Release
uses: softprops/action-gh-release@v1
with:
files: dist/*
generate_release_notes: true

This comprehensive workflow: 1. Checks code quality (formatting, linting,
type checking, security, dead code) 2. Runs tests on multiple Python
versions and operating systems 3. Builds and deploys documentation 4.
Publishes packages to PyPI on tagged releases 5. Creates GitHub releases
with release notes

3.2.13. CI/CD Best Practices

1. Keep workflows modular: Split complex workflows into logical
jobs

2. Fail fast: Run quick checks (like formatting) before longer ones (like
testing)

3. Cache dependencies: Speed up workflows by caching pip packages
4. Be selective: Only run necessary jobs based on changed files
5. Test thoroughly: Include all environments your code supports
6. Secure secrets: Use GitHub’s secret storage for tokens and keys
7. Monitor performance: Watch workflow execution times and op-

timize slow steps

With these CI/CD practices in place, your development workflow becomes
more reliable and automatic. Quality checks run on every change, docu-
mentation stays up to date, and releases happen smoothly and consis-
tently.

95



3. Documentation and Deployment

In the final section, we’ll explore how to publish and distribute Python
packages to make your work available to others.

3.3. Package Publishing and Distribution

When your Python project matures, you may want to share it with others
through the Python Package Index (PyPI). Publishing your package makes
it installable via pip, allowing others to easily use your work.

3.3.1. Preparing Your Package for Distribution

Before publishing, your project needs the right structure. Let’s ensure
everything is ready:

3.3.1.1. 1. Package Structure Review

A distributable package should have this basic structure:

my_project/
��� src/
� ��� my_package/
� ��� __init__.py
� ��� module1.py
� ��� module2.py
��� tests/
��� docs/
��� pyproject.toml
��� LICENSE
��� README.md

96



3.3. Package Publishing and Distribution

3.3.1.2. 2. Package Configuration with pyproject.toml

Modern Python packaging uses pyproject.toml for configuration:

[build-system]
requires = ["setuptools>=61.0", "wheel"]
build-backend = "setuptools.build_meta"

[project]
name = "my-package"
version = "0.1.0"
description = "A short description of my package"
readme = "README.md"
requires-python = ">=3.8"
license = {text = "MIT"}
authors = [

{name = "Your Name", email = "your.email@example.com"}
]
classifiers = [

"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",

]
dependencies = [

"requests>=2.25.0",
"numpy>=1.20.0",

]

[project.optional-dependencies]
dev = [

"pytest>=7.0.0",
"pytest-cov",
"ruff",
"mypy",

97



3. Documentation and Deployment

]
doc = [

"mkdocs",
"mkdocs-material",
"mkdocstrings[python]",

]

[project.urls]
"Homepage" = "https://github.com/yourusername/my-package"
"Bug Tracker" = "https://github.com/yourusername/my-package/issues"

[project.scripts]
my-command = "my_package.cli:main"

[tool.setuptools]
package-dir = {"" = "src"}
packages = ["my_package"]

This configuration: - Defines basic metadata (name, version, description)
- Lists dependencies (both required and optional) - Sets up entry points
for command-line scripts - Specifies the package location (src layout)

3.3.1.3. 3. Include Essential Files

Ensure you have these files:

# Create a LICENSE file (example: MIT License)
cat > LICENSE << EOF
MIT License

Copyright (c) $(date +%Y) Your Name

98



3.3. Package Publishing and Distribution

Permission is hereby granted...
EOF

# Create a comprehensive README.md with:
# - What the package does
# - Installation instructions
# - Basic usage examples
# - Links to documentation
# - Contributing guidelines

3.3.2. Building Your Package

With configuration in place, you’re ready to build distribution packages:

# Install build tools
pip install build

# Build both wheel and source distribution
python -m build

This creates two files in the dist/ directory: - A source distribution
(.tar.gz) - A wheel file (.whl)

Always check your distributions before publishing:

# Install twine
pip install twine

# Check the package
twine check dist/*

99



3. Documentation and Deployment

3.3.3. Publishing to Test PyPI

Before publishing to the real PyPI, test your package on TestPyPI:

1. Create a TestPyPI account at https://test.pypi.org/account/register/
2. Upload your package:

twine upload --repository testpypi dist/*

3. Test installation from TestPyPI:

pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/ my-package

3.3.4. Publishing to PyPI

When everything works correctly on TestPyPI:

1. Create a PyPI account at https://pypi.org/account/register/
2. Upload your package:

twine upload dist/*

Your package is now available to the world via pip install
my-package!

3.3.5. Automating Package Publishing

To automate publishing with GitHub Actions, add a workflow that: 1.
Builds the package 2. Uploads to PyPI when you create a release tag

100



3.3. Package Publishing and Distribution

name: Publish Python Package

on:
release:

types: [created]

jobs:
deploy:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:

python-version: '3.10'
- name: Install dependencies
run: |

python -m pip install --upgrade pip
pip install build twine

- name: Build and publish
env:

TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}

run: |
python -m build
twine upload dist/*

For better security, use API tokens instead of your PyPI password: 1.
Generate a token from your PyPI account settings 2. Add it as a GitHub
repository secret 3. Use the token in your workflow:

101



3. Documentation and Deployment

- name: Build and publish
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}

run: |
python -m build
twine upload dist/*

3.3.6. Versioning Best Practices

Follow Semantic Versioning (MAJOR.MINOR.PATCH): - MAJOR:
Incompatible API changes - MINOR: New functionality (backward-
compatible) - PATCH: Bug fixes (backward-compatible)

Track versions in one place, usually in __init__.py:

# src/my_package/__init__.py
__version__ = "0.1.0"

Or with a dynamic version from your git tags using setuptools-scm:

[build-system]
requires = ["setuptools>=61.0", "wheel", "setuptools_scm[toml]>=6.2"]
build-backend = "setuptools.build_meta"

[tool.setuptools_scm]
# Uses git tags for versioning

3.3.7. Creating Releases

A good release process includes:

102

https://semver.org/


3.3. Package Publishing and Distribution

1. Update documentation:

• Ensure README is current
• Update changelog with notable changes

2. Create a new version:

• Update version number
• Create a git tag:

git tag -a v0.1.0 -m "Release version 0.1.0"
git push origin v0.1.0

3. Monitor the CI/CD pipeline:

• Ensure tests pass
• Verify package build succeeds
• Confirm successful publication

4. Announce the release:

• Create GitHub release notes
• Post in relevant community forums
• Update documentation site

3.3.8. Package Maintenance

Once published, maintain your package responsibly:

1. Monitor issues on GitHub or GitLab
2. Respond to bug reports promptly
3. Review and accept contributions from the community
4. Regularly update dependencies to address security issues
5. Create new releases when significant improvements are ready

103



3. Documentation and Deployment

3.3.9. Advanced Distribution Topics

As your package ecosystem grows, consider these advanced techniques:

3.3.9.1. 1. Binary Extensions

For performance-critical components, you might include compiled C ex-
tensions: - Use Cython to compile Python to C - Configure with the
build-system section in pyproject.toml - Build platform-specific wheels

3.3.9.2. 2. Namespace Packages

For large projects split across multiple packages:

# src/myorg/packageone/__init__.py
# src/myorg/packagetwo/__init__.py

# Makes 'myorg' a namespace package

3.3.9.3. 3. Conditional Dependencies

For platform-specific dependencies:

dependencies = [
"requests>=2.25.0",
"numpy>=1.20.0",
"pywin32>=300; platform_system == 'Windows'",

]

104

https://cython.org/


3.3. Package Publishing and Distribution

3.3.9.4. 4. Data Files

Include non-Python files (data, templates, etc.):

[tool.setuptools]
package-dir = {"" = "src"}
packages = ["my_package"]
include-package-data = true

Create a MANIFEST.in file:

include src/my_package/data/*.json
include src/my_package/templates/*.html

By following these practices, you’ll create a professional, well-maintained
package that others can easily discover, install, and use. Publishing your
work to PyPI is not just about sharing code—it’s about participating in
the Python ecosystem and contributing back to the community.

3.3.10. Modern vs. Traditional Python Packaging

Python packaging has evolved significantly over the years:

3.3.10.1. Traditional setup.py Approach

Historically, Python packages required a setup.py file:

105



3. Documentation and Deployment

# setup.py
from setuptools import setup, find_packages

setup(
name="my-package",
version="0.1.0",
packages=find_packages(),
install_requires=[

"requests>=2.25.0",
"numpy>=1.20.0",

],
)

This approach is still common and has advantages for: - Compatibility
with older tooling - Dynamic build processes that need Python code -
Complex build requirements (e.g., C extensions, custom steps)

3.3.10.2. Modern pyproject.toml Approach

Since PEP 517/518, packages can use pyproject.toml exclusively:

[build-system]
requires = ["setuptools>=61.0", "wheel"]
build-backend = "setuptools.build_meta"

[project]
name = "my-package"
version = "0.1.0"
dependencies = [

"requests>=2.25.0",
"numpy>=1.20.0",

]

106



3.3. Package Publishing and Distribution

This declarative approach is recommended for new projects because it:
- Provides a standardized configuration format - Supports multiple build
systems (not just setuptools) - Simplifies dependency specification - Avoids
executing Python code during installation

3.3.10.3. Which Approach Should You Use?

• For new, straightforward packages: Use pyproject.toml only
• For packages with complex build requirements: You may need both

pyproject.toml and setup.py
• For maintaining existing packages: Consider gradually migrating to

pyproject.toml

Many projects use a hybrid approach, with basic metadata in
pyproject.toml and complex build logic in setup.py.

107





4. Case Study: Building SimpleBot -
A Python Development Workflow
Example

This case study demonstrates how to apply the Python development
pipeline practices to a real project. We’ll walk through the development
of SimpleBot, a lightweight wrapper for Large Language Models (LLMs)
designed for educational settings.

4.1. Project Overview

SimpleBot is an educational tool that makes it easy for students to inter-
act with Large Language Models through simple Python functions. Key
features include:

• Simple API for sending prompts to LLMs
• Pre-defined personality bots (pirate, Shakespeare, emoji, etc.)
• Error handling and user-friendly messages
• Support for local LLM servers like Ollama

This project is ideal for our case study because: - It solves a real prob-
lem (making LLMs accessible in educational settings) - It’s small enough
to understand quickly but complex enough to demonstrate real workflow
practices - It includes both pure Python and compiled Cython compo-
nents

109



4. Case Study: Building SimpleBot - A Python Development Workflow Example

Let’s see how we can develop this project using our Python development
pipeline.

4.2. 1. Setting the Foundation

4.2.1. Project Structure

We’ll set up the project using the recommended src layout:

simplebot/
��� src/
� ��� simplebot/
� ��� __init__.py
� ��� core.py
� ��� personalities.py
��� tests/
� ��� __init__.py
� ��� test_core.py
� ��� test_personalities.py
��� docs/
� ��� index.md
� ��� examples.md
��� .gitignore
��� README.md
��� requirements.in
��� pyproject.toml
��� LICENSE

4.2.2. Setting Up Version Control

First, we initialize a Git repository and create a .gitignore file:

110



4.2. 1. Setting the Foundation

# Initialize Git repository
git init

# Create a file named README.md with the following contents:d .gitignore with the following contents:
# Virtual environments
.venv/
venv/
env/

# Python cache files
__pycache__/
*.py[cod]
*$py.class
.pytest_cache/

# Distribution / packaging
dist/
build/
*.egg-info/

# Cython generated files
*.c
*.so

# Local development settings
.env
.vscode/

# Coverage reports
htmlcov/
.coverage
EOF

111



4. Case Study: Building SimpleBot - A Python Development Workflow Example

# Initial commit
git add .gitignore
git commit -m "Initial commit: Add .gitignore"

4.2.3. Creating Essential Files

Let’s create the basic files:

# Create the project structure
mkdir -p src/simplebot tests docs

# Create a file name
# SimpleBot

> LLMs made simple for students and educators

SimpleBot is a lightweight Python wrapper that simplifies interactions with Large Language Models (LLMs) for educational settings.

## Installation

\`\`\`bash
pip install simplebot
\`\`\`

## Quick Start

\`\`\`python
from simplebot import get_response, pirate_bot

# Basic usage
response = get_response("Tell me about planets")
print(response)

112



4.2. 1. Setting the Foundation

# Use a personality bot
pirate_response = pirate_bot("Tell me about sailing ships")
print(pirate_response)
\`\`\`

## License

This project is licensed under the MIT License - see the LICENSE file for details.
EOF

# Create a file named LICENSE with the following contents:
MIT License

Copyright (c) 2025 SimpleBot Authors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
EOF

113



4. Case Study: Building SimpleBot - A Python Development Workflow Example

git add README.md LICENSE
git commit -m "Add README and LICENSE"

4.2.4. Virtual Environment Setup

We’ll create a virtual environment and install basic development pack-
ages:

# Create virtual environment
python -m venv .venv

# Activate the environment (Linux/macOS)
source .venv/bin/activate
# On Windows: .venv\Scripts\activate

# Initial package installation for development
pip install pytest ruff mypy build

4.3. 2. Building the Core Functionality

Let’s start with the core module implementation:

# Create the package structure
mkdir -p src/simplebot

# Create the package __init__.py
# Create a file named src/simplebot/__init__.py with the following contents:
"""SimpleBot - LLMs made simple for students and educators."""

from .core import get_response

114



4.3. 2. Building the Core Functionality

from .personalities import (
pirate_bot,
shakespeare_bot,
emoji_bot,
teacher_bot,
coder_bot,

)

__version__ = "0.1.0"

__all__ = [
"get_response",
"pirate_bot",
"shakespeare_bot",
"teacher_bot",
"emoji_bot",
"coder_bot",

]

# Create the core module
# Create a file named src/simplebot/core.py with the following contents:
"""Core functionality for SimpleBot."""

import requests
import random
import time
from typing import Optional, Dict, Any

# Cache for the last used model to avoid redundant loading messages
_last_model: Optional[str] = None

def get_response(
prompt: str,

115



4. Case Study: Building SimpleBot - A Python Development Workflow Example

model: str = "llama3",
system: str = "You are a helpful assistant.",
stream: bool = False,
api_url: Optional[str] = None,

) -> str:
"""
Send a prompt to the LLM API and retrieve the model's response.

Args:
prompt: The text prompt to send to the language model
model: The name of the model to use
system: System instructions that control the model's behavior
stream: Whether to stream the response
api_url: Custom API URL (defaults to local Ollama server)

Returns:
The model's response text, or an error message if the request fails

"""
global _last_model

# Default to local Ollama if no API URL is provided
if api_url is None:

api_url = "http://localhost:11434/api/generate"

# Handle model switching with friendly messages
if model != _last_model:

warmup_messages = [
f"� Loading model '{model}' into RAM... give me a sec...",
f"� Spinning up the AI core for '{model}'...",
f"� Summoning the knowledge spirits... '{model}' booting...",
f"� Thinking really hard with '{model}'...",
f"� Switching to model: {model} ... (may take a few seconds)",

]

116



4.3. 2. Building the Core Functionality

print(random.choice(warmup_messages))

# Short pause to simulate/allow for model loading
time.sleep(1.5)
_last_model = model

# Validate input
if not prompt.strip():

return "� Empty prompt."

# Prepare the request payload
payload: Dict[str, Any] = {

"model": model,
"prompt": prompt,
"system": system,
"stream": stream

}

try:
# Send request to the LLM API
response = requests.post(

api_url,
json=payload,
timeout=10

)
response.raise_for_status()
data = response.json()
return data.get("response", "� No response from model.")

except requests.RequestException as e:
return f"� Connection Error: {str(e)}"

except Exception as e:
return f"� Error: {str(e)}"

EOF

117



4. Case Study: Building SimpleBot - A Python Development Workflow Example

# Create the personalities module
# Create a file named src/simplebot/personalities.py with the following contents:
"""Pre-defined personality bots for SimpleBot."""

from .core import get_response
from typing import Optional

def pirate_bot(prompt: str, model: Optional[str] = None) -> str:
"""
Generate a response in the style of a 1700s pirate with nautical slang.

Args:
prompt: The user's input text/question
model: Optional model override

Returns:
A response written in pirate vernacular

"""
return get_response(

prompt,
system="You are a witty pirate from the 1700s. "

"Use nautical slang, say 'arr' occasionally, "
"and reference sailing, treasure, and the sea.",

model=model or "llama3"
)

def shakespeare_bot(prompt: str, model: Optional[str] = None) -> str:
"""
Generate a response in the style of William Shakespeare.

Args:
prompt: The user's input text/question
model: Optional model override

118



4.3. 2. Building the Core Functionality

Returns:
A response written in Shakespearean style

"""
return get_response(

prompt,
system="You respond in the style of William Shakespeare, "

"using Early Modern English vocabulary and phrasing.",
model=model or "llama3"

)

def emoji_bot(prompt: str, model: Optional[str] = None) -> str:
"""
Generate a response primarily using emojis with minimal text.

Args:
prompt: The user's input text/question
model: Optional model override

Returns:
A response composed primarily of emojis

"""
return get_response(

prompt,
system="You respond using mostly emojis, mixing minimal words "

"and symbols to convey meaning. You love using expressive "
"emoji strings.",

model=model or "llama3"
)

def teacher_bot(prompt: str, model: Optional[str] = None) -> str:
"""
Generate a response in the style of a patient, helpful educator.

119



4. Case Study: Building SimpleBot - A Python Development Workflow Example

Args:
prompt: The user's input text/question
model: Optional model override

Returns:
A response with an educational approach

"""
return get_response(

prompt,
system="You are a patient, encouraging teacher who explains "

"concepts clearly at an appropriate level. Break down "
"complex ideas into simpler components and use analogies "
"when helpful.",

model=model or "llama3"
)

def coder_bot(prompt: str, model: Optional[str] = None) -> str:
"""
Generate a response from a coding assistant optimized for programming help.

Args:
prompt: The user's input programming question or request
model: Optional model override (defaults to a coding-specific model)

Returns:
A technical response focused on code-related assistance

"""
return get_response(

prompt,
system="You are a skilled coding assistant who explains and writes "

"code clearly and concisely. Prioritize best practices, "
"readability, and proper error handling.",

model=model or "codellama"

120



4.4. 3. Package Configuration

)
EOF

git add src/
git commit -m "Add core SimpleBot functionality"

4.4. 3. Package Configuration

Let’s set up the package configuration in pyproject.toml:

# Create pyproject.toml directory

Note on Modern Packaging: This case study uses the
newer pyproject.toml-only approach for simplicity and to fol-
low current best practices. Many existing Python projects still
use setup.py, either alongside pyproject.toml or as their pri-
mary configuration. The setup.py approach remains valuable
for packages with complex build requirements, custom build
steps, or when supporting older tools and Python versions. For
SimpleBot, our straightforward package requirements allow us
to use the cleaner, declarative pyproject.toml approach.

4.5. Create a file named pyproject.toml with the
following contents:

Let’s set up the package configuration in pyproject.toml:

121



4. Case Study: Building SimpleBot - A Python Development Workflow Example

# Create a file named pyproject.toml with the following contents:
[build-system]
requires = ["setuptools>=61.0", "wheel"]
build-backend = "setuptools.build_meta"

[project]
name = "simplebot"
version = "0.1.0"
description = "LLMs made simple for students and educators"
readme = "README.md"
requires-python = ">=3.7"
license = {text = "MIT"}
authors = [

{name = "SimpleBot Team", email = "example@example.com"}
]
classifiers = [

"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Intended Audience :: Education",
"Topic :: Education :: Computer Aided Instruction (CAI)",

]
dependencies = [

"requests>=2.25.0",
]

[project.optional-dependencies]
dev = [

"pytest>=7.0.0",
"pytest-cov",
"ruff",
"mypy",

]

122



4.5. Create a file named pyproject.toml with the following contents:

[project.urls]
"Homepage" = "https://github.com/simplebot-team/simplebot"
"Bug Tracker" = "https://github.com/simplebot-team/simplebot/issues"

# Tool configurations
[tool.ruff]
select = ["E", "F", "I"]
line-length = 88

[tool.ruff.per-file-ignores]
"__init__.py" = ["F401"]

[tool.mypy]
python_version = "3.7"
warn_return_any = true
warn_unused_configs = true
disallow_untyped_defs = true
disallow_incomplete_defs = true

[[tool.mypy.overrides]]
module = "tests.*"
disallow_untyped_defs = false

[tool.pytest.ini_options]
testpaths = ["tests"]
EOF

# Create requirements.in file
# Create a file named requirements.in with the following contents:
# Direct dependencies
requests>=2.25.0
EOF

123



4. Case Study: Building SimpleBot - A Python Development Workflow Example

# Create requirements-dev.in
# Create a file named requirements-dev.in with the following contents:
# Development dependencies
pytest>=7.0.0
pytest-cov
ruff
mypy
build
twine
EOF

git add pyproject.toml requirements*.in
git commit -m "Add package configuration and dependency files"

4.6. 4. Writing Tests

Let’s create some tests for our SimpleBot functionality:

# Create test files
# Create a file named tests/__init__.py with the following contents:
"""SimpleBot test package."""
EOF

# Create a file named tests/test_core.py with the following contents:
"""Tests for the SimpleBot core module."""

import pytest
from unittest.mock import patch, MagicMock
from simplebot.core import get_response

@patch("simplebot.core.requests.post")

124



4.6. 4. Writing Tests

def test_successful_response(mock_post):
"""Test that a successful API response is handled correctly."""
# Setup mock
mock_response = MagicMock()
mock_response.json.return_value = {"response": "Test response"}
mock_post.return_value = mock_response

# Call function
result = get_response("Test prompt")

# Assertions
assert result == "Test response"
mock_post.assert_called_once()

@patch("simplebot.core.requests.post")
def test_empty_prompt(mock_post):

"""Test that empty prompts are handled correctly."""
result = get_response("")
assert "Empty prompt" in result
mock_post.assert_not_called()

@patch("simplebot.core.requests.post")
def test_api_error(mock_post):

"""Test that API errors are handled gracefully."""
# Setup mock to raise an exception
mock_post.side_effect = Exception("Test error")

# Call function
result = get_response("Test prompt")

# Assertions
assert "Error" in result
assert "Test error" in result

125



4. Case Study: Building SimpleBot - A Python Development Workflow Example

EOF

# Create a file named tests/test_personalities.py with the following contents:
"""Tests for the SimpleBot personalities module."""

import pytest
from unittest.mock import patch
from simplebot import (

pirate_bot,
shakespeare_bot,
emoji_bot,
teacher_bot,
coder_bot,

)

@patch("simplebot.personalities.get_response")
def test_pirate_bot(mock_get_response):

"""Test that pirate_bot calls get_response with correct parameters."""
# Setup
mock_get_response.return_value = "Arr, test response!"

# Call function
result = pirate_bot("Test prompt")

# Assertions
assert result == "Arr, test response!"
mock_get_response.assert_called_once()
# Check that system prompt contains pirate references
system_arg = mock_get_response.call_args[1]["system"]
assert "pirate" in system_arg.lower()

@patch("simplebot.personalities.get_response")
def test_custom_model(mock_get_response):

126



4.7. 5. Applying Code Quality Tools

"""Test that personality bots accept custom model parameter."""
# Setup
mock_get_response.return_value = "Custom model response"

# Call functions with custom model
shakespeare_bot("Test", model="custom-model")

# Assertions
assert mock_get_response.call_args[1]["model"] == "custom-model"

EOF

git add tests/
git commit -m "Add unit tests for SimpleBot"

4.7. 5. Applying Code Quality Tools

Let’s run our code quality tools and fix any issues:

# Install development dependencies
pip install -r requirements-dev.in

# Run Ruff for formatting and linting
ruff format .
ruff check .

# Run mypy for type checking
mypy src/

# Fix any issues identified by the tools
git add .
git commit -m "Apply code formatting and fix linting issues"

127



4. Case Study: Building SimpleBot - A Python Development Workflow Example

4.8. 6. Documentation

Let’s create basic documentation:

# Create docs directory
mkdir -p docs

# Create main documentation file
# Create a file named docs/index.md with the following contents:
# SimpleBot Documentation

> LLMs made simple for students and educators

SimpleBot is a lightweight Python wrapper that simplifies interactions with Large Language Models (LLMs) for educational settings. It abstracts away the complexity of API calls, model management, and error handling, allowing students to focus on learning programming concepts through engaging AI interactions.

## Installation

\`\`\`bash
pip install simplebot
\`\`\`

## Basic Usage

\`\`\`python
from simplebot import get_response

# Basic usage with default model
response = get_response("Tell me about planets")
print(response)
\`\`\`

## Personality Bots

128



4.8. 6. Documentation

SimpleBot comes with several pre-defined personality bots:

\`\`\`python
from simplebot import pirate_bot, shakespeare_bot, emoji_bot, teacher_bot, coder_bot

# Get a response in pirate speak
pirate_response = pirate_bot("Tell me about sailing ships")
print(pirate_response)

# Get a response in Shakespearean style
shakespeare_response = shakespeare_bot("What is love?")
print(shakespeare_response)

# Get a response with emojis
emoji_response = emoji_bot("Explain happiness")
print(emoji_response)

# Get an educational response
teacher_response = teacher_bot("How do photosynthesis work?")
print(teacher_response)

# Get coding help
code_response = coder_bot("Write a Python function to check if a string is a palindrome")
print(code_response)
\`\`\`

## API Reference

### get_response()

\`\`\`python
def get_response(

prompt: str,

129



4. Case Study: Building SimpleBot - A Python Development Workflow Example

model: str = "llama3",
system: str = "You are a helpful assistant.",
stream: bool = False,
api_url: Optional[str] = None,

) -> str:
\`\`\`

The core function for sending prompts to an LLM and getting responses.

#### Parameters:

- `prompt`: The text prompt to send to the language model
- `model`: The name of the model to use (default: "llama3")
- `system`: System instructions that control the model's behavior
- `stream`: Whether to stream the response (default: False)
- `api_url`: Custom API URL (defaults to local Ollama server)

#### Returns:

- A string containing the model's response or an error message
EOF

# Create examples file
# Create a file named docs/examples.md with the following contents:
# SimpleBot Examples

Here are some examples of using SimpleBot in educational settings.

## Creating Custom Bot Personalities

You can create custom bot personalities:

\`\`\`python

130



4.8. 6. Documentation

from simplebot import get_response

def scientist_bot(prompt):
"""A bot that responds like a scientific researcher."""
return get_response(

prompt,
system="You are a scientific researcher. Provide evidence-based "

"responses with references to studies when possible. "
"Be precise and methodical in your explanations."

)

result = scientist_bot("What happens during photosynthesis?")
print(result)
\`\`\`

## Building a Simple Quiz System

\`\`\`python
from simplebot import teacher_bot

quiz_questions = [
"What is the capital of France?",
"Who wrote Romeo and Juliet?",
"What is the chemical symbol for water?"

]

def generate_quiz():
print("=== Quiz Time! ===")
for i, question in enumerate(quiz_questions, 1):

print(f"Question {i}: {question}")
user_answer = input("Your answer: ")

# Generate feedback on the answer

131



4. Case Study: Building SimpleBot - A Python Development Workflow Example

feedback = teacher_bot(
f"Question: {question}\nStudent answer: {user_answer}\n"
"Provide brief, encouraging feedback on whether this answer is "
"correct. If incorrect, provide the correct answer."

)
print(f"Feedback: {feedback}\n")

# Run the quiz
generate_quiz()
\`\`\`

## Simulating a Conversation Between Bots

\`\`\`python
from simplebot import pirate_bot, shakespeare_bot

def bot_conversation(topic, turns=3):
"""Simulate a conversation between two bots on a given topic."""
print(f"=== A conversation about {topic} ===")

# Start with the pirate
current_message = f"Tell me about {topic}"
current_bot = "pirate"

for i in range(turns):
if current_bot == "pirate":

response = pirate_bot(current_message)
print(f"� � Pirate: {response}")
current_message = f"Respond to this: {response}"
current_bot = "shakespeare"

else:
response = shakespeare_bot(current_message)
print(f"� Shakespeare: {response}")

132



4.9. 7. Setup CI/CD with GitHub Actions

current_message = f"Respond to this: {response}"
current_bot = "pirate"

print()

# Run a conversation about the ocean
bot_conversation("the ocean", turns=4)
\`\`\`
EOF

git add docs/
git commit -m "Add documentation"

4.9. 7. Setup CI/CD with GitHub Actions

Now let’s set up continuous integration:

# Create GitHub Actions workflow directory
mkdir -p .github/workflows

# Create CI workflow file
# Create a file named .github/workflows/ci.yml with the following contents:
name: Python CI

on:
push:

branches: [ main ]
pull_request:

branches: [ main ]

jobs:
test:

133



4. Case Study: Building SimpleBot - A Python Development Workflow Example

runs-on: ubuntu-latest
strategy:

matrix:
python-version: ["3.7", "3.8", "3.9", "3.10"]

steps:
- uses: actions/checkout@v3

- name: Set up Python \${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: \${{ matrix.python-version }}
cache: pip

- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install -e ".[dev]"

- name: Check formatting with Ruff
run: ruff format --check .

- name: Lint with Ruff
run: ruff check .

- name: Type check with mypy
run: mypy src/

- name: Test with pytest
run: pytest --cov=src/ tests/

- name: Build package
run: python -m build

134



4.9. 7. Setup CI/CD with GitHub Actions

EOF

# Create release workflow
# Create a file named .github/workflows/release.yml with the following contents:
name: Publish to PyPI

on:
release:

types: [created]

jobs:
deploy:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:

python-version: "3.10"

- name: Install dependencies
run: |

python -m pip install --upgrade pip
pip install build twine

- name: Build and publish
env:

TWINE_USERNAME: \${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: \${{ secrets.PYPI_PASSWORD }}

run: |
python -m build
twine check dist/*

135



4. Case Study: Building SimpleBot - A Python Development Workflow Example

twine upload dist/*
EOF

git add .github/
git commit -m "Add CI/CD workflows"

4.10. 8. Finalizing for Distribution

Let’s prepare for distribution:

# Install the package in development mode
pip install -e .

# Run the tests
pytest

# Build the package
python -m build

# Verify the package
twine check dist/*

4.11. 9. Project Summary

By following the Python Development Workflow, we’ve transformed the
SimpleBot concept into a well-structured, tested, and documented Python
package that’s ready for distribution. Let’s review what we’ve accom-
plished:

1. Project Foundation:

136



4.12. 10. Next Steps

• Created a clear, organized directory structure
• Set up version control with Git
• Added essential files (README, LICENSE)

2. Development Environment:

• Created a virtual environment
• Managed dependencies cleanly

3. Code Quality:

• Applied type hints throughout the codebase
• Used Ruff for formatting and linting
• Used mypy for static type checking

4. Testing:

• Created comprehensive unit tests with pytest
• Used mocking to test external API interactions

5. Documentation:

• Added clear docstrings
• Created usage documentation with examples

6. Packaging & Distribution:

• Configured the package with pyproject.toml
• Set up CI/CD with GitHub Actions

4.12. 10. Next Steps

If we were to continue developing SimpleBot, potential next steps might
include:

1. Enhanced Features:

• Add more personality bots

137



4. Case Study: Building SimpleBot - A Python Development Workflow Example

• Support for conversation memory/context
• Configuration file support

2. Advanced Documentation:

• Set up MkDocs for a full documentation site
• Add tutorials for classroom usage

3. Performance Improvements:

• Add caching for responses
• Implement Cython optimization for performance-critical sec-

tions

4. Security Enhancements:

• Add API key management
• Implement content filtering for educational settings

This case study demonstrates how following a structured Python devel-
opment workflow leads to a high-quality, maintainable, and distributable
package—even for relatively small projects.

138



5. Advanced Development
Techniques

As your Python projects grow in complexity and requirements, you’ll en-
counter challenges that require more sophisticated approaches than the
foundational practices we’ve established. This chapter explores advanced
techniques that build upon our core development pipeline, focusing on
principles and patterns that scale with your project’s needs.

Rather than diving into the specifics of every advanced tool, we’ll focus on
understanding when and why to adopt more complex solutions, main-
taining our philosophy of “simple but not simplistic.”

5.1. Performance Optimization: Measure First,
Optimize Second

Performance optimization often feels compelling, but premature optimiza-
tion is a common trap. The key principle: measure before you op-
timize. Our development pipeline already includes the foundation for
performance work through comprehensive testing and quality gates.

5.1.1. Establishing Performance Baselines

Before optimizing, establish measurable baselines using tools that inte-
grate naturally with your existing workflow:

139



5. Advanced Development Techniques

# performance/benchmarks.py
import time
import pytest
from my_package.core import expensive_function

class TestPerformance:
"""Performance benchmarks for critical functions."""

def test_expensive_function_performance(self, benchmark):
"""Benchmark the expensive function execution time."""
# pytest-benchmark integrates with our existing test suite
result = benchmark(expensive_function, large_dataset)
assert result is not None # Basic correctness check

@pytest.mark.slow
def test_memory_usage_under_load(self):

"""Test memory behavior with large datasets."""
import psutil
import os

process = psutil.Process(os.getpid())
initial_memory = process.memory_info().rss

# Run memory-intensive operation
result = process_large_dataset()

final_memory = process.memory_info().rss
memory_increase = final_memory - initial_memory

# Assert reasonable memory usage (adjust threshold as needed)
assert memory_increase < 100 * 1024 * 1024 # 100MB threshold

Add performance dependencies to your development requirements:

140



5.1. Performance Optimization: Measure First, Optimize Second

[tool.poe.tasks]
# Add performance testing to your task automation
benchmark = "pytest --benchmark-only performance/"
profile = "python -m cProfile -o profile.stats src/my_package/main.py"
profile-view = "python -c 'import pstats; pstats.Stats(\"profile.stats\").sort_stats(\"cumulative\").print_stats(20)'"

This approach integrates performance measurement into your existing de-
velopment workflow rather than introducing entirely new tools.

5.1.2. Performance Optimization Strategy

When benchmarks indicate performance issues, follow a systematic ap-
proach:

1. Profile to identify bottlenecks - Don’t guess where the slowness
is

2. Optimize the algorithms first - Better algorithms beat micro-
optimizations

3. Consider caching strategically - Cache expensive computations,
not everything

4. Measure the impact - Ensure optimizations actually improve per-
formance

# Example: Adding strategic caching to expensive operations
from functools import lru_cache
from typing import Dict, Any

class DataProcessor:
"""Example of strategic performance optimization."""

@lru_cache(maxsize=128)

141



5. Advanced Development Techniques

def expensive_calculation(self, key: str) -> Dict[str, Any]:
"""Cache expensive calculations with bounded memory usage."""
# Expensive computation here
return self._compute_complex_result(key)

def process_batch(self, items: list) -> list:
"""Process items in batches to reduce overhead."""
# Batch processing reduces per-item overhead
batch_size = 100
results = []

for i in range(0, len(items), batch_size):
batch = items[i:i + batch_size]
batch_results = self._process_batch_optimized(batch)
results.extend(batch_results)

return results

The key insight: optimize within your existing architecture before
considering more complex solutions like Cython or asyncio.

5.2. Containerization: Development Environment
Consistency

Containers address the challenge of environment reproducibility across
different development machines and deployment environments. However,
containerization should enhance, not replace, your existing development
workflow.

142



5.2. Containerization: Development Environment Consistency

5.2.1. Development Containers vs. Production Containers

Development containers prioritize developer experience: - Fast rebuild
times - Volume mounts for live code editing - Development tools and de-
bugging capabilities - Integration with your existing toolchain

Production containers prioritize runtime efficiency: - Minimal attack
surface - Optimized for size and startup time - No development dependen-
cies - Security-focused configurations

5.2.2. Integrating Containers with Your Workflow

Create a Dockerfile that builds upon your existing dependency manage-
ment:

# Dockerfile - Multi-stage build supporting both development and production
FROM python:3.11-slim as base

# Install uv for fast dependency management
RUN pip install uv

WORKDIR /app

# Copy dependency specifications
COPY pyproject.toml uv.lock ./

# Development stage
FROM base as development
RUN uv sync --all-extras --dev
COPY . .
CMD ["uv", "run", "python", "-m", "my_package"]

# Production stage

143



5. Advanced Development Techniques

FROM base as production
RUN uv sync --frozen --no-dev
COPY src/ src/
RUN uv pip install -e .
CMD ["python", "-m", "my_package"]

Add container management to your task automation:

[tool.poe.tasks]
# Development container tasks
docker-build = "docker build --target development -t my-project:dev ."
docker-run = "docker run -it --rm -v $(pwd):/app my-project:dev"
docker-test = "docker run --rm -v $(pwd):/app my-project:dev uv run pytest"

# Production container tasks
docker-build-prod = "docker build --target production -t my-project:prod ."

This approach uses containers to enhance reproducibility without dis-
rupting your core development workflow.

5.2.3. When to Containerize

Consider containerization when you encounter: - Environment incon-
sistencies between team members - Complex system dependencies
that are difficult to install - Deployment environment differences
from development - Service integration challenges (databases, mes-
sage queues, etc.)

Don’t containerize simply because it’s trendy—use it to solve specific re-
producibility problems.

144



5.3. Scaling Your Development Process

5.3. Scaling Your Development Process

As projects grow, you’ll need techniques for managing complexity while
maintaining development velocity.

5.3.1. Modular Architecture Patterns

Design your codebase for growth by establishing clear module bound-
aries:

# src/my_package/core/interfaces.py
from abc import ABC, abstractmethod
from typing import Any, Dict

class DataProcessor(ABC):
"""Interface for data processing implementations."""

@abstractmethod
def process(self, data: Dict[str, Any]) -> Dict[str, Any]:

"""Process data according to implementation-specific logic."""
pass

class StorageBackend(ABC):
"""Interface for storage implementations."""

@abstractmethod
def save(self, key: str, data: Dict[str, Any]) -> bool:

"""Save data to storage backend."""
pass

@abstractmethod
def load(self, key: str) -> Dict[str, Any]:

145



5. Advanced Development Techniques

"""Load data from storage backend."""
pass

This interface-based design allows you to: 1. Test implementations in-
dependently with mocks and stubs 2. Swap implementations without
changing dependent code 3. Add new implementations without mod-
ifying existing code 4. Maintain clear boundaries between different
parts of your system

5.3.2. Configuration Management

As projects grow, configuration becomes more complex. Establish patterns
early:

# src/my_package/config.py
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import os

@dataclass
class DatabaseConfig:

"""Database connection configuration."""
host: str
port: int
username: str
password: str
database: str

@classmethod
def from_env(cls) -> 'DatabaseConfig':

"""Create config from environment variables."""

146



5.3. Scaling Your Development Process

return cls(
host=os.getenv('DB_HOST', 'localhost'),
port=int(os.getenv('DB_PORT', '5432')),
username=os.getenv('DB_USERNAME', ''),
password=os.getenv('DB_PASSWORD', ''),
database=os.getenv('DB_NAME', ''),

)

@dataclass
class AppConfig:

"""Main application configuration."""
debug: bool
database: DatabaseConfig
log_level: str

@classmethod
def load(cls, config_path: Optional[Path] = None) -> 'AppConfig':

"""Load configuration from environment and optional config file."""
# Implementation handles environment variables,
# config files, and sensible defaults
pass

This approach provides: - Type safety through dataclasses and type hints
- Environment-based configuration for different deployment contexts
- Testable configuration through dependency injection - Clear docu-
mentation of required configuration values

5.3.3. Database Integration Patterns

When your application needs persistent storage, integrate database oper-
ations cleanly with your existing testing and development workflow:

147



5. Advanced Development Techniques

# src/my_package/database.py
from contextlib import contextmanager
from typing import Generator
import sqlalchemy as sa
from sqlalchemy.orm import sessionmaker

class DatabaseManager:
"""Manages database connections and sessions."""

def __init__(self, connection_string: str):
self.engine = sa.create_engine(connection_string)
self.SessionLocal = sessionmaker(bind=self.engine)

@contextmanager
def get_session(self) -> Generator[sa.orm.Session, None, None]:

"""Get a database session with automatic cleanup."""
session = self.SessionLocal()
try:

yield session
session.commit()

except Exception:
session.rollback()
raise

finally:
session.close()

# Integration with your application
class UserService:

"""Service for user-related operations."""

def __init__(self, db_manager: DatabaseManager):
self.db_manager = db_manager

148



5.3. Scaling Your Development Process

def create_user(self, email: str, name: str) -> User:
"""Create a new user."""
with self.db_manager.get_session() as session:

user = User(email=email, name=name)
session.add(user)
session.flush() # Get the ID without committing
return user

Test database operations with fixtures:

# tests/conftest.py
import pytest
from my_package.database import DatabaseManager

@pytest.fixture
def db_manager():

"""Provide a test database manager."""
# Use in-memory SQLite for tests
manager = DatabaseManager("sqlite:///:memory:")
# Create tables
Base.metadata.create_all(manager.engine)
return manager

@pytest.fixture
def user_service(db_manager):

"""Provide a user service with test database."""
return UserService(db_manager)

This pattern maintains clean separation between business logic and data
persistence while integrating smoothly with your testing infrastructure.

149



5. Advanced Development Techniques

5.4. API Development and Integration

When building applications that expose or consume APIs, maintain the
same development quality principles.

5.4.1. API Design Principles

Design APIs that are: 1. Consistent - Similar operations work similarly 2.
Documented - Clear, up-to-date documentation 3. Versioned - Handle
changes without breaking existing clients 4. Testable - Easy to test both
as provider and consumer

# src/my_package/api/schemas.py
from pydantic import BaseModel, Field
from typing import List, Optional
from datetime import datetime

class UserCreate(BaseModel):
"""Schema for creating a new user."""
email: str = Field(..., description="User's email address")
name: str = Field(..., min_length=1, description="User's full name")

class User(BaseModel):
"""Schema for user data."""
id: int
email: str
name: str
created_at: datetime

class Config:
from_attributes = True # For SQLAlchemy integration

150



5.4. API Development and Integration

class UserList(BaseModel):
"""Schema for user list responses."""
users: List[User]
total: int
page: int
per_page: int

5.4.2. API Testing Strategy

Test APIs at multiple levels:

# tests/test_api.py
import pytest
from fastapi.testclient import TestClient
from my_package.api.main import app

@pytest.fixture
def client():

"""API test client."""
return TestClient(app)

def test_create_user_success(client, db_manager):
"""Test successful user creation."""
user_data = {

"email": "test@example.com",
"name": "Test User"

}

response = client.post("/users/", json=user_data)

assert response.status_code == 201
assert response.json()["email"] == user_data["email"]

151



5. Advanced Development Techniques

assert "id" in response.json()

def test_create_user_validation_error(client):
"""Test user creation with invalid data."""
invalid_data = {

"email": "not-an-email",
"name": "" # Empty name should fail validation

}

response = client.post("/users/", json=invalid_data)

assert response.status_code == 422
assert "detail" in response.json()

This approach integrates API testing with your existing pytest infrastruc-
ture and maintains the same quality standards.

5.5. Cross-Platform Development Considerations

When your Python application needs to run across different operating
systems, handle platform differences gracefully within your existing devel-
opment workflow.

5.5.1. Path and Environment Handling

Use pathlib and environment-aware patterns:

# src/my_package/utils/paths.py
from pathlib import Path
import os
import sys

152



5.5. Cross-Platform Development Considerations

from typing import Optional

class PathManager:
"""Handle cross-platform path operations."""

@staticmethod
def get_config_dir() -> Path:

"""Get the platform-appropriate configuration directory."""
if sys.platform == "win32":

config_dir = Path(os.getenv('APPDATA', '')) / 'my_package'
elif sys.platform == "darwin": # macOS

config_dir = Path.home() / 'Library' / 'Application Support' / 'my_package'
else: # Linux and other Unix-like systems

config_dir = Path(os.getenv('XDG_CONFIG_HOME', Path.home() / '.config')) / 'my_package'

config_dir.mkdir(parents=True, exist_ok=True)
return config_dir

@staticmethod
def get_data_dir() -> Path:

"""Get the platform-appropriate data directory."""
if sys.platform == "win32":

data_dir = Path(os.getenv('LOCALAPPDATA', '')) / 'my_package'
elif sys.platform == "darwin":

data_dir = Path.home() / 'Library' / 'Application Support' / 'my_package'
else:

data_dir = Path(os.getenv('XDG_DATA_HOME', Path.home() / '.local' / 'share')) / 'my_package'

data_dir.mkdir(parents=True, exist_ok=True)
return data_dir

153



5. Advanced Development Techniques

5.5.2. Testing Across Platforms

Use your existing CI/CD pipeline to test across platforms:

# .github/workflows/test.yml - Platform matrix testing
name: Tests
on: [push, pull_request]

jobs:
test:
runs-on: ${{ matrix.os }}
strategy:

matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python-version: [3.9, 3.10, 3.11]

steps:
- uses: actions/checkout@v4
- name: Set up Python

uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}

- name: Install uv
run: pip install uv

- name: Install dependencies
run: uv sync

- name: Run tests
run: uv run pytest

This extends your existing quality gates to ensure cross-platform compat-
ibility.

154



5.6. When to Adopt Advanced Techniques

5.6. When to Adopt Advanced Techniques

The key to advanced techniques is selective adoption based on actual
needs:

5.6.1. Adopt Containerization When:

• Team members struggle with environment setup
• You need to integrate with external services during development

• Deployment environments differ significantly from development

5.6.2. Adopt Performance Optimization When:

• Benchmarks show actual performance problems
• Performance requirements are clearly defined
• You have established baseline measurements

5.6.3. Adopt Advanced Architecture When:

• Code complexity makes maintenance difficult
• You need to support multiple implementations of core functionality
• Team size makes modular development beneficial

5.6.4. Don’t Adopt Advanced Techniques When:

• Your current approach works well
• The complexity cost exceeds the benefits
• You haven’t mastered the foundational practices

155



5. Advanced Development Techniques

5.7. Maintaining Development Velocity

The most important principle for advanced techniques: they should en-
hance, not replace, your core development practices. Your testing,
code quality, documentation, and automation should continue to work as
you adopt more sophisticated approaches.

Advanced techniques are tools for solving specific problems, not goals in
themselves. Focus on delivering value through your software while main-
taining the solid development foundation you’ve established.

156



6. Project Management and
Automation

Moving beyond individual development practices, this chapter focuses on
project-level management, automation, and collaboration workflows. We’ll
explore tools and techniques that help you maintain consistency, automate
repetitive tasks, and establish sustainable development practices.

6.1. Task Automation with Poe the Poet

One of the first challenges in any Python project is managing the growing
number of commands you need to run: testing, linting, formatting, build-
ing documentation, and more. While traditional Unix environments might
use Makefiles, Python projects benefit from a more integrated approach.

Poe the Poet provides a powerful task runner that integrates seamlessly
with your pyproject.toml file, offering a cross-platform alternative to
Makefiles that works naturally with your existing Python toolchain.

6.1.1. Setting Up Poe the Poet

Add Poe the Poet as a development dependency to your project:

uv add --dev poethepoet

157



6. Project Management and Automation

This aligns with our philosophy of keeping project tooling within the
project itself, ensuring every developer has access to the same automa-
tion tools.

6.1.2. Defining Project Tasks

Define your common development tasks in your pyproject.toml file:

[tool.poe.tasks]
# Code quality tasks
lint = "ruff check ."
format = "ruff format ."
type-check = "mypy src/"

# Testing tasks
test = "pytest tests/"
test-cov = "pytest --cov=src tests/"

# Project management
clean = { shell = "rm -rf dist/ .coverage htmlcov/ .pytest_cache/" }
install-dev = { shell = "uv sync && pre-commit install" }

# Documentation
docs-serve = "mkdocs serve"
docs-build = "mkdocs build"

# Combined workflows
check = ["format", "lint", "type-check", "test"]
build = ["clean", "check", "uv build"]

This configuration demonstrates several key principles:

158



6.1. Task Automation with Poe the Poet

1. Single source of truth: All project automation is defined in one
place

2. Composable tasks: Complex workflows are built from simpler
tasks

3. Cross-platform compatibility: Tasks work on Windows, macOS,
and Linux

4. Integration with existing tools: Works seamlessly with uv, ruff,
pytest, and other tools in our stack

6.1.3. Advanced Task Configuration

For more complex scenarios, Poe supports parameterized tasks and condi-
tional execution:

[tool.poe.tasks]
# Task with parameters
test-file = { cmd = "pytest ${file}", args = [

{ name = "file", default = "tests/", help = "Test file or directory" }
]}

# Multi-step setup task
setup = { shell = """

uv sync
pre-commit install
echo "Development environment ready!"
""" }

# Environment-specific tasks
[tool.poe.tasks.deploy]
shell = """
if [ "$ENVIRONMENT" = "production" ]; then

echo "Deploying to production..."
# Add production deployment commands

159



6. Project Management and Automation

else
echo "Deploying to staging..."
# Add staging deployment commands

fi
"""

6.1.4. Running Tasks

Execute your defined tasks using the poe command through uv:

# Run individual tasks
uv run poe lint
uv run poe test

# Run parameterized tasks
uv run poe test-file tests/test_specific.py

# Chain multiple tasks
uv run poe format lint test

# Run complex workflows
uv run poe check # Runs format, lint, type-check, test in sequence
uv run poe build # Full build pipeline

6.1.5. Integration with Development Workflow

The power of Poe the Poet becomes apparent when integrated into your
daily development routine:

Pre-commit hooks can reference your Poe tasks:

160



6.2. Project Setup and Structure

# .pre-commit-config.yaml
repos:

- repo: local
hooks:

- id: poe-check
name: Run project checks
entry: uv run poe check
language: system
pass_filenames: false

IDE integration allows running tasks directly from your editor, while
CI/CD pipelines can use the same task definitions:

# GitHub Actions example
- name: Run checks
run: uv run poe check

This approach eliminates the disconnect between local development and
automated systems—everyone uses the same commands.

6.2. Project Setup and Structure

Consistent project structure is fundamental to maintainable Python devel-
opment. While Python is famously flexible, establishing conventions early
saves significant time and confusion as projects grow.

6.2.1. Modern Python Project Layout

Our recommended project structure balances simplicity with scalability:

161



6. Project Management and Automation

my-project/
��� pyproject.toml # Project configuration and dependencies
��� README.md # Project overview and setup instructions
��� .gitignore # Version control exclusions
��� .pre-commit-config.yaml # Automated code quality checks
��� src/ # Source code (src layout)
� ��� my_project/
� ��� __init__.py
� ��� main.py # Entry point for applications
� ��� core/ # Core modules
��� tests/ # Test code
� ��� __init__.py
� ��� conftest.py # pytest configuration
� ��� test_main.py
��� docs/ # Documentation
� ��� mkdocs.yml
��� scripts/ # Utility scripts

��� setup_dev.py

This structure follows several important principles:

Src Layout: Placing source code in a src/ directory prevents acciden-
tal imports of uninstalled code during development and testing. This is
particularly important for ensuring your tests run against the installed
package, not just local files.

Clear Separation: Tests, documentation, and source code are clearly
separated, making the project structure immediately understandable to
new contributors.

Configuration Co-location: All project configuration lives in
pyproject.toml, providing a single source of truth for project metadata,
dependencies, and tool configuration.

162



6.2. Project Setup and Structure

6.2.2. Initializing New Projects

Create new projects following this structure using uv:

# Create a new package project
uv init my-project --package
cd my-project

# Set up the recommended structure
mkdir -p tests docs scripts
touch tests/__init__.py tests/conftest.py

# Add essential development dependencies
uv add --dev pytest pytest-cov ruff mypy poethepoet pre-commit

# Initialize git and pre-commit
git init
uv run pre-commit install

6.2.3. Application vs. Package Considerations

The structure varies slightly depending on whether you’re building an
application (end-user focused) or a package (library for other develop-
ers):

Applications typically include: - Configuration files and settings man-
agement - Entry point scripts or CLI interfaces
- Deployment configurations - User documentation focused on usage

Packages emphasize: - Clean, documented APIs - Comprehensive test
coverage - Developer documentation
- Distribution metadata for PyPI

163



6. Project Management and Automation

Most projects start as applications and may later extract reusable com-
ponents into packages. Our recommended structure accommodates both
paths naturally.

6.3. Team Collaboration Workflows

6.3.1. Code Review Standards

Establish clear expectations for code reviews that align with your auto-
mated tooling:

1. Automated checks must pass: All pre-commit hooks and CI
checks should be green before review

2. Test coverage requirements: New code should include appropri-
ate tests

3. Documentation updates: Public API changes require documen-
tation updates

4. Consistent style: Rely on automated formatting (Ruff) rather than
manual style discussions

6.3.2. Release Management

Define clear release processes that leverage your automation:

[tool.poe.tasks]
# Release preparation
pre-release = ["check", "test-cov", "docs-build"]

# Version management (using setuptools-scm for git-based versioning)
version = "python -m setuptools_scm"

# Release workflow

164



6.3. Team Collaboration Workflows

release = { shell = """
echo "Current version: $(python -m setuptools_scm)"
git tag v$(python -m setuptools_scm --strip-dev)
git push origin --tags
uv build
twine upload dist/*
""" }

6.3.3. Managing Technical Debt

Use your automation to continuously monitor and address technical
debt:

[tool.poe.tasks]
# Code quality metrics
complexity = "radon cc src/ -a"
maintainability = "radon mi src/"
debt = ["complexity", "maintainability"]

# Dependency analysis
deps-outdated = "pip list --outdated"
deps-security = "pip-audit"

Regular execution of these tasks helps maintain code quality and security
over time.

165



6. Project Management and Automation

6.4. Development Environment Standards

6.4.1. Editor-Agnostic Configuration

While developers may prefer different editors, project configuration
should work consistently across environments. Our approach centers
on pyproject.toml configuration that most modern Python editors
understand:

[tool.ruff]
line-length = 88
target-version = "py39"

[tool.ruff.lint]
select = ["E", "F", "B", "I"]
ignore = ["E501"] # Line length handled by formatter

[tool.mypy]
python_version = "3.9"
strict = true
warn_return_any = true

[tool.pytest.ini_options]
testpaths = ["tests"]
addopts = "--cov=src --cov-report=term-missing"

This configuration works automatically with VS Code, PyCharm, Vim,
Emacs, and other editors with Python support.

6.4.2. Development Environment Reproducibility

Ensure consistent development environments across team members:

166



6.4. Development Environment Standards

[tool.poe.tasks]
doctor = { shell = """

echo "Python version: $(python --version)"
echo "uv version: $(uv --version)"
echo "Project dependencies:"
uv pip list
echo "Development environment: Ready"
""" }

New team members can quickly verify their setup with uv run poe
doctor.

This chapter has established the foundation for scalable project manage-
ment through automation, consistent structure, and collaborative work-
flows. These practices become increasingly valuable as projects grow in
size and complexity, ensuring that good habits established early continue
to serve the project throughout its lifecycle.

167





7. Conclusion: Embracing Efficient
Python Development

Throughout this guide, we’ve built a comprehensive Python development
pipeline that balances simplicity with professional practices. From project
structure to deployment, we’ve covered tools and techniques that help
create maintainable, reliable, and efficient Python code.

7.1. The Power of a Complete Pipeline

Each component of our development workflow serves a specific purpose:

• Project structure provides organization and clarity
• Version control enables collaboration and change tracking
• Virtual environments isolate dependencies
• Dependency management ensures reproducible environments
• Code formatting and linting maintain consistent, error-free code
• Testing verifies functionality
• Type checking catches type errors early
• Security scanning prevents vulnerabilities
• Dead code detection keeps projects lean
• Documentation makes code accessible to others
• CI/CD automates quality checks and deployment
• Package publishing shares your work with the world

169



7. Conclusion: Embracing Efficient Python Development

Together, these practices create a development experience that is both
efficient and enjoyable. You spend less time on repetitive tasks and more
time solving the real problems your code addresses.

7.2. Your Path Forward: A Practical Adoption
Strategy

The concepts in this book are most valuable when applied systematically.
Here’s a concrete roadmap for implementing these practices, tailored to
different project stages and team sizes:

7.2.1. For Your Next New Project (Week 1)

Immediate implementation - Use these from day one: 1. Project
structure: Start with the src layout and proper directory organization 2.
Version control: Initialize Git immediately with a proper .gitignore
3. Virtual environment: Use uv or pip-tools for dependency manage-
ment 4. Basic automation: Set up Poe the Poet with essential tasks
(lint, test, format)

# Your starting checklist - 15 minutes to professional setup
uv init my-project --package
cd my-project
# Copy your preferred pyproject.toml template
uv add --dev pytest ruff mypy poethepoet pre-commit
uv run pre-commit install
git init && git add . && git commit -m "Initial project setup"

170



7.2. Your Path Forward: A Practical Adoption Strategy

7.2.2. For Existing Projects (Month 1-2)

Gradual integration - Add one practice per week: - Week 1: Add code
formatting with Ruff (uv run ruff format .) - Week 2: Introduce
basic testing with pytest - Week 3: Add pre-commit hooks for automated
quality checks
- Week 4: Set up task automation with Poe the Poet - Week 5: Add
type checking with mypy - Week 6: Implement basic CI/CD with GitHub
Actions

This pace prevents workflow disruption while building better practices.

7.2.3. For Team Environments (Month 2-3)

Collaborative workflows - Focus on consistency and shared practices:
- Documentation standards: Establish README templates and doc-
string conventions - Code review processes: Define what automated
checks must pass before review - Shared configurations: Centralize tool
configuration in pyproject.toml - Development environment parity:
Use containers or detailed setup documentation

7.2.4. Advanced Techniques (Month 3+)

Only after mastering the fundamentals: - Performance optimization:
When benchmarks indicate actual problems - Advanced architecture:
When code complexity impedes development - Containerization: When
environment consistency becomes problematic

171



7. Conclusion: Embracing Efficient Python Development

7.3. Beyond Tools: Engineering Culture

The most important outcome isn’t just using specific tools—it’s developing
habits and values that lead to better software:

• Think defensively: Use tools that catch mistakes early
• Value maintainability: Write code for humans, not just computers
• Embrace automation: Let computers handle repetitive tasks
• Practice continuous improvement: Regularly refine your work-

flow
• Share knowledge: Document not just what code does, but why

7.4. When to Consider More Advanced Tools

As your projects grow more complex, you might explore more sophisticated
tools:

• Containerization with Docker for consistent environments
• Orchestration with Kubernetes for complex deployments
• Monorepo tools like Pants or Bazel for large codebases
• Feature flagging for controlled feature rollouts
• Advanced monitoring for production insights

However, the core practices we’ve covered will remain valuable regardless
of the scale you reach.

7.5. Common Implementation Challenges and
Solutions

As you implement these practices, you’ll likely encounter some common
obstacles. Here’s how to address them:

172



7.5. Common Implementation Challenges and Solutions

7.5.1. “This Seems Like Too Much Overhead”

Symptom: Tools feel burdensome and slow down development Solution:
Start smaller and focus on automation - Begin with just ruff format
and pytest - Use pre-commit hooks to make quality checks automatic -
Remember: 5 minutes of setup saves hours of debugging later

7.5.2. “My Team Resists New Processes”

Symptom: Team members bypass or ignore new practices Solution:
Lead by example and demonstrate value - Start with your own projects
and show improved outcomes - Introduce practices that solve existing pain
points - Make adherence easy with good tooling and clear documenta-
tion

7.5.3. “Tool Configuration is Confusing”

Symptom: Conflicting configurations or unclear settings Solution: Use
our recommended starting templates - Copy configuration from successful
projects - Use the companion templates to bootstrap correctly - Focus on
standard configurations before customizing

7.5.4. “I Don’t Know When to Add Advanced Practices”

Symptom: Uncertainty about when complexity is justified Solution: Let
pain points guide your decisions - Add testing when manual verification
becomes tedious - Add CI/CD when manual releases cause errors - Add
advanced architecture when code becomes hard to maintain - Never add
complexity that doesn’t solve an actual problem

173



7. Conclusion: Embracing Efficient Python Development

7.6. Staying Updated and Growing

Python’s ecosystem continues to evolve. Maintain relevance by:

7.6.1. Following Core Development Principles

• Python Enhancement Proposals (PEPs): Understand the di-
rection of the language

• Community discussions: Participate in forums like Python Dis-
course or Reddit r/Python

• Release notes: Read updates for your core dependencies (pytest,
ruff, uv, etc.)

7.6.2. Practical Learning Approach

• Test new tools in small projects before adopting them in pro-
duction

• Attend conferences or meetups (virtual or in-person) for broader
perspective

• Read other people’s code to see different implementation ap-
proaches

• Contribute to open source to deepen understanding of develop-
ment practices

7.6.3. Continuous Improvement Mindset

• Regular retrospectives: What’s working well? What’s causing
friction?

• Experiment with alternatives: Try new tools when they solve
specific problems

174



7.7. Final Thoughts

• Share knowledge: Write about your experiences and learn from
feedback

7.7. Final Thoughts

This book represents more than a collection of Python tools—it’s a philos-
ophy of development that prioritizes sustainability, maintainability, and
developer happiness. The practices we’ve explored create a foundation
that serves projects from first prototype to production scale.

7.7.1. The Universal Principles Behind the Tools

While we’ve used Python tooling as our examples, the core concepts trans-
fer across languages and domains:

• Clear project structure reduces cognitive load in any language
• Automated quality checks catch errors early regardless of the

technology stack

• Comprehensive testing provides confidence when making changes
• Thoughtful automation eliminates repetitive work and reduces

human error
• Progressive complexity allows practices to evolve with project

needs

These principles remain constant even as specific tools evolve.

7.7.2. Your Development Journey Continues

The practices in this book form a foundation, not a destination. As you
apply these concepts:

175



7. Conclusion: Embracing Efficient Python Development

• Trust the process: Initially, some practices may feel like overhead,
but their value becomes clear as projects grow

• Adapt to your context: Not every practice fits every project, but
understanding the principles helps you make informed decisions

• Share your knowledge: Teaching others these practices deepens
your own understanding and improves the broader development com-
munity

7.7.3. Starting Your Next Project

You now have everything needed to begin any Python project with profes-
sional practices from day one. Whether you use our bash script for trans-
parency, GitHub templates for convenience, or cookiecutter templates for
customization, you can establish solid foundations in minutes rather than
hours.

More importantly, you understand why these practices matter and when
to apply them. This knowledge will serve you well as you encounter new
challenges and evaluate new tools.

7.7.4. A Personal Note

Remember that perfect is the enemy of good. Start with the basics, im-
prove incrementally, and focus on delivering value through your code. The
best development pipeline is one that you’ll actually use consistently.

The Python ecosystem will continue evolving—new tools will emerge, and
current tools will improve—but the underlying principles of clear structure,
automated quality, comprehensive testing, and thoughtful automation will
remain valuable throughout your development career.

We hope this guide helps you build software that not only works but is
also maintainable, reliable, and enjoyable to develop. The investment you
make in better development practices pays dividends for years to come.

176



7.7. Final Thoughts

Happy coding, and may your development pipeline serve you well!

177





Acknowledgments

This book represents a collaborative effort involving both human creativ-
ity and artificial intelligence assistance. I would like to acknowledge the
contributions of various individuals and tools that made this work possi-
ble.

Author

Michael Borck (michael@borck.me) - Lead author and creator. Michael
developed the core concepts, structured the book, and wrote the original
content for “From Zero to Production: A Practical Python Development
Pipeline.”

AI Assistance

This book was developed with assistance from several AI tools:

• Claude by Anthropic - Provided editorial suggestions, helped re-
fine concepts, and assisted with book structure and content develop-
ment.

• Midjourney AI - Generated the cover artwork based on prompts
describing the book’s themes of Python development pipelines.

179



Acknowledgments

Technical Production

• Quarto - Used for document formatting and book generation
• GitHub - Used for version control and collaboration
• GitHub Pages - Hosts the online version of the book

Special Thanks

Special thanks to the Python development community whose tools, frame-
works, and best practices form the foundation of this book. The vibrant
ecosystem of Python developers continually pushing the boundaries of
what’s possible with the language has been an inspiration.

Also thanks to the educators and mentors who emphasize practical, sus-
tainable development practices over quick-but-fragile solutions.

Note: While AI tools were used in the production of this book, all content
reflects the author’s intentions and has been reviewed by humans. The
Python development practices presented aim to balance simplicity with
robustness - embracing the book’s theme of “Simple but not Simplistic.”

180



A. Glossary of Python Development
Terms

A.1. A

• API (Application Programming Interface): A set of definitions
and protocols for building and integrating application software.

• Artifact: Any file or package produced during the software devel-
opment process, such as documentation or distribution packages.

A.2. C

• CI/CD (Continuous Integration/Continuous Deployment):
Practices where code changes are automatically tested (CI) and de-
ployed to production (CD) when they pass quality checks.

• CLI (Command Line Interface): A text-based interface for in-
teracting with software using commands.

• Code Coverage: A measure of how much of your code is executed
during testing.

• Code Linting: The process of analyzing code for potential errors,
style issues, and suspicious constructs.

181



A. Glossary of Python Development Terms

A.3. D

• Dependency: An external package or module that your project
requires to function properly.

• Docstring: A string literal specified in source code that is used to
document a specific segment of code.

• Dynamic Typing: A programming language feature where variable
types are checked during runtime rather than compile time.

• – Cookiecutter: A project templating tool that helps developers
create new projects with a predefined structure, configuration
files, and boilerplate code. Cookiecutter uses Jinja2 templating
to customize files based on user inputs during project genera-
tion.

A.4. E

• Entry Point: A function or method that serves as an access point
to an application, module, or library.

A.5. F

• Fixture: In testing, a piece of code that sets up a system for testing
and provides test data.

A.6. G

• Git: A distributed version control system for tracking changes in
source code.

182



A.7. I

• GitHub Repository Template: A repository that can be used as
a starting point for new projects on GitHub.

• GitHub/GitLab: Web-based platforms for hosting Git repositories
with collaboration features.

A.7. I

• Integration Testing: Testing how different parts of the system
work together.

A.8. L

• Lock File: A file that records the exact versions of dependencies
needed by a project to ensure reproducible installations.

A.9. M

• Mocking: Simulating the behavior of real objects in controlled ways
during testing.

• Module: A file containing Python code that can be imported and
used by other Python files.

• Monorepo: A software development strategy where many projects
are stored in the same repository.

A.10. N

• Namespace Package: A package split across multiple directories
or distribution packages.

183



A. Glossary of Python Development Terms

A.11. P

• Package: A directory of Python modules containing an additional
__init__.py file.

• PEP (Python Enhancement Proposal): A design document
providing information to the Python community, often proposing
new features.

• PEP 8: The style guide for Python code.
• PyPI (Python Package Index): The official repository for third-

party Python software.

A.12. R

• Refactoring: Restructuring existing code without changing its ex-
ternal behavior.

• Repository: A storage location for software packages and version
control.

• Requirements File: A file listing the dependencies required for a
Python project.

• Reproducible Build: A build that can be recreated exactly re-
gardless of when or where it’s built.

A.13. S

• Semantic Versioning: A versioning scheme in the format MA-
JOR.MINOR.PATCH, where each number increment indicates the
type of change.

• Static Analysis: Analyzing code without executing it to find po-
tential issues.

• Static Typing: Specifying variable types at compile time instead
of runtime.

184



A.14. T

• Stub Files: Files that contain type annotations for modules that
don’t have native typing support.

A.14. T

• Test-Driven Development (TDD): A development process where
tests are written before the code.

• Type Annotation: Syntax for indicating the expected type of vari-
ables, function parameters, and return values.

• Type Hinting: Adding type annotations to Python code to help
with static analysis and IDE assistance.

A.15. U

• Unit Testing: Testing individual components in isolation from the
rest of the system.

A.16. V

• Virtual Environment: An isolated Python environment that al-
lows packages to be installed for use by a particular project, without
affecting other projects.

A.17. W

• Wheel: A built-package format for Python that can be installed
more quickly than source distributions.

185





B. AI Tools for Python Development

The integration of AI into software development represents one of the
most significant shifts in how developers work. This appendix provides
an overview of AI tools available for Python development, guidance on
how to use them effectively, and important considerations for their ethical
use.

B.1. Overview of Current AI Tools and Their
Strengths

B.1.1. Code Assistants and Completion Tools

• GitHub Copilot:

– Strengths: Real-time code suggestions directly in your IDE;
trained on public GitHub repositories; understands context
from open files

– Best for: Rapid code generation, boilerplate reduction, explor-
ing implementation alternatives

– Integration: Available for VS Code, Visual Studio, JetBrains
IDEs, and Neovim

• JetBrains AI Assistant:

– Strengths: Deeply integrated with JetBrains IDEs; code ex-
planation and generation; documentation creation

187



B. AI Tools for Python Development

– Best for: PyCharm users; explaining complex code; generating
docstrings

– Integration: Built into PyCharm and other JetBrains prod-
ucts

• Tabnine:

– Strengths: Code completion with local models option; privacy-
focused; adapts to your coding style

– Best for: Teams with strict data privacy requirements; person-
alized code suggestions

– Integration: Works with most popular IDEs including VS
Code and PyCharm

B.1.2. Conversational AI Assistants

• Claude (Anthropic):

– Strengths: Excellent reasoning capabilities; strong Python
knowledge; handles lengthy context

– Best for: Complex problem-solving; explaining algorithms; re-
viewing code; documentation creation

– Access: Web interface, API, Claude Code (terminal)

• ChatGPT/GPT-4 (OpenAI):

– Strengths: Wide knowledge base; good at generating code and
explaining concepts

– Best for: Troubleshooting; learning concepts; brainstorming
ideas; code generation

– Access: Web interface, API, plugins for various platforms

• Gemini (Google):

– Strengths: Strong code analysis and generation; multimodal
capabilities useful for analyzing diagrams

188



B.1. Overview of Current AI Tools and Their Strengths

– Best for: Code support; learning resources; teaching concepts
– Access: Web interface, API, Duet AI integrations

B.1.3. AI-Enhanced Code Review Tools

• DeepSource:

– Strengths: Continuous analysis; focuses on security issues,
anti-patterns, and performance

– Best for: Automated code reviews; maintaining code quality
standards

– Integration: GitHub, GitLab, Bitbucket

• Codiga:

– Strengths: Real-time code analysis; custom rule creation; au-
tomated PR comments

– Best for: Enforcing team-specific best practices; providing
quick feedback

– Integration: GitHub, GitLab, Bitbucket, and various IDEs

• Sourcery:

– Strengths: Python-specific refactoring suggestions; explains
why changes are recommended

– Best for: Learning better Python patterns; gradual code qual-
ity improvement

– Integration: VS Code, JetBrains IDEs, GitHub

B.1.4. AI Documentation Tools

• Mintlify Writer:

– Strengths: Auto-generates documentation from code; sup-
ports various docstring formats

189



B. AI Tools for Python Development

– Best for: Quickly documenting existing codebases; maintain-
ing consistent documentation

– Integration: VS Code, JetBrains IDEs

• Docstring Generator AI:

– Strengths: Creates detailed docstrings following specified for-
mats (Google, NumPy, etc.)

– Best for: Consistently formatting documentation across a
project

– Integration: VS Code extension

B.2. Guidelines for Effective Prompting

The quality of AI output depends significantly on how you formulate your
requests. Here are strategies to get the most from AI tools when working
with Python:

B.2.1. General Prompting Principles

1. Be specific and detailed: Include relevant context about your
project, such as Python version, frameworks used, and existing pat-
terns to follow.

# Less effective
"Write a function to process user data."

# More effective
"Write a Python 3.10 function to process user data that:
- Takes a dictionary of user attributes
- Validates email and age fields
- Returns a normalized user object
- Follows our project's error handling pattern of raising ValueError with descriptive messages

190



B.2. Guidelines for Effective Prompting

- Uses type hints"

2. Provide examples: When you need code that follows certain pat-
terns or styles, provide examples.

"Here's how we write API handler functions in our project:

async def get_user(user_id: int) -> Dict[str, Any]:
try:

response = await http_client.get(f"/users/{user_id}")
return response.json()

except HTTPError as e:
log.error(f"Failed to fetch user {user_id}: {e}")
raise UserFetchError(f"Could not retrieve user: {e}")

Please write a similar function for fetching user orders."

3. Use iterative refinement: Start with a basic request, then refine
the results.

# Initial prompt
"Write a function to parse CSV files with pandas."

# Follow-up refinements
"Now add error handling for missing files."
"Update it to support both comma and semicolon delimiters."
"Add type hints to the function."

4. Specify output format: Clarify how you want information pre-
sented.

"Explain the difference between @classmethod and @staticmethod in Python.
Format your response with:
1. A brief definition of each
2. Code examples showing typical use cases
3. A table comparing their key attributes"

191



B. AI Tools for Python Development

B.2.2. Python-Specific Prompting Strategies

1. Request specific Python versions or features: Clarify which
Python version you’re targeting.

"Write this function using Python 3.9+ features like the new dictionary merge operator."

2. Specify testing frameworks: When requesting tests, mention
your preferred framework.

"Generate pytest test cases for this function, using fixtures and parametrize for the test scenarios."

3. Ask for alternative approaches: Python often offers multiple
solutions to problems.

"Show three different ways to implement this list filtering function, explaining the tradeoffs between readability, performance, and memory usage."

4. Request educational explanations: For learning purposes, ask
the AI to explain its reasoning.

"Write a function to efficiently find duplicate elements in a list, then explain why the algorithm you chose is efficient and what its time complexity is."

B.2.3. Using AI for Code Review

When using AI to review your Python code, structured prompts yield
better results:

"Review this Python code for:
1. Potential bugs or edge cases
2. Performance issues
3. Pythonic improvements
4. PEP 8 compliance
5. Possible security concerns

```python

192

B.2. Guidelines for Effective Prompting

def process_user_input(data):
[your code here]

For each issue found, please: - Describe the problem - Explain why it’s
problematic - Suggest a specific improvement with code”

Troubleshooting with AI

When debugging problems, provide context systematically:

“I’m getting this error when running my Python script:

[Error message]

Here’s the relevant code:

[your code here]

I’ve already tried: 1. [attempted solution 1] 2. [attempted solution 2]

I’m using Python 3.9 with packages: pandas 1.5.3, numpy 1.23.0

What might be causing this error and how can I fix it?”

Ethical Considerations and Limitations

As you integrate AI tools into your Python development workflow, consider these important ethical considerations and limitations:

Ethical Considerations

1. **Intellectual Property and Licensing**
- Code generated by AI may be influenced by training data with various licenses

193

B. AI Tools for Python Development

- For commercial projects, consult your legal team about AI code usage policies
- Consider adding comments attributing AI-generated sections when substantial

2. **Security Risks**
- Never blindly implement AI-suggested security-critical code without review
- AI may recommend outdated or vulnerable patterns it learned from older code
- Verify cryptographic implementations, authentication mechanisms, and input validation independently

3. **Overreliance and Skill Development**
- Balance AI usage with developing personal understanding
- For educational settings, consider policies on appropriate AI assistance
- Use AI to enhance learning rather than bypass it

4. **Bias and Fairness**
- AI may perpetuate biases present in training data
- Review generated code for potential unfair treatment or assumptions
- Be especially careful with user-facing features and data processing pipelines

5. **Environmental Impact**
- Large AI models have significant computational and energy costs
- Consider using more efficient, specialized code tools for routine tasks
- Batch similar requests when possible instead of making many small queries

Technical Limitations

1. **Knowledge Cutoffs**
- AI assistants have knowledge cutoffs and may not be aware of recent Python developments
- Verify suggestions for newer Python versions or recently updated libraries
- Example: An AI might not know about features introduced in Python 3.11 or 3.12 if its training cutoff predates them

2. **Context Length Restrictions**
- Most AI tools have limits on how much code they can process at once
- For large files or complex projects, focus queries on specific components
- Provide essential context rather than entire codebases

194

B.2. Guidelines for Effective Prompting

3. **Hallucinations and Inaccuracies**
- AI can confidently suggest incorrect implementations or non-existent functions
- Always verify generated code works as expected
- Be especially wary of package import suggestions, API usage patterns, and framework-specific code

4. **Understanding Project-Specific Context**
- AI lacks full understanding of your project architecture and requirements
- Generated code may not align with your established patterns or constraints
- Always review for compatibility with your broader codebase

5. **Time-Sensitive Information**
- Best practices, dependencies, and security recommendations change over time
- Verify suggestions against current Python community standards
- Double-check deprecation warnings and avoid outdated patterns

Practical Mitigation Strategies

1. **Code Review Process**
- Establish clear guidelines for reviewing AI-generated code
- Use the same quality standards for AI-generated and human-written code
- Consider automated testing requirements for AI contributions

2. **Attribution and Documentation**
- Document where and how AI tools were used in your development process
- Consider noting substantial AI contributions in code comments
- Example: `# Initial implementation generated by GitHub Copilot, modified to handle edge cases`

3. **Verification Practices**
- Test AI-generated code thoroughly, especially edge cases
- Verify performance characteristics claimed by AI suggestions
- Cross-check security recommendations with trusted sources

4. **Balanced Use Policy**

195

B. AI Tools for Python Development

- Develop team guidelines for appropriate AI tool usage
- Encourage use for boilerplate, documentation, and creative starting points
- Emphasize human oversight for architecture, security, and critical algorithms

5. **Continuous Learning**
- Use AI explanations as learning opportunities
- Ask AI to explain its suggestions and verify understanding
- Build knowledge to reduce dependency on AI for core concepts

The Future of AI in Python Development

AI tools for Python development are evolving rapidly. Current trends suggest these future directions:

- **More specialized Python-specific models**: Trained specifically on Python codebases with deeper framework understanding
- **Enhanced IDE integration**: More seamless AI assistance throughout the development workflow
- **Improved testing capabilities**: AI generating more comprehensive test suites with higher coverage
- **Custom models for organizations**: Trained on internal codebases to better match company standards
- **Agent-based development**: AI systems that can execute multi-step development tasks with minimal guidance

As these tools evolve, maintaining a balanced approach that leverages AI strengths while preserving human oversight will remain essential for quality Python development.

`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImFwcGVuZGljZXMifQ== -->`{=html}

```{=html}
<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImFwcGVuZGljZXMiLCJib29rSXRlbVR5cGUiOiJjaGFwdGVyIiwiYm9va0l0ZW1OdW1iZXIiOjMsImJvb2tJdGVtRmlsZSI6ImFwcGVuZGljZXMvY2hlY2tsaXN0LnFtZCIsImJvb2tJdGVtRGVwdGgiOjF9 -->

196



C. Python Development Workflow
Checklist

This checklist provides a practical reference for setting up and maintaining
Python projects of different scales. Choose the practices that match your
project’s complexity and team size.

Development
Stage

Simple/Beginner
Project

Intermediate/Large
Project

Project Setup
Create project
structure

� Basic directory with
code and tests

� Full src layout with
package under src/

Initialize version
control

� git init and basic
.gitignore

� Advanced .gitignore
with branch strategies

Add essential files � README.md � README.md,
LICENSE,
CONTRIBUTING.md

Environment
Setup
Create virtual
environment

� python -m venv
.venv

� uv venv or containerized
environment

Track
dependencies

� pip freeze >
requirements.txt

� requirements.in with
pip-compile or uv pip
compile

Install
dependencies

� pip install -r
requirements.txt

� pip-sync or uv pip
sync

197



C. Python Development Workflow Checklist

Development
Stage

Simple/Beginner
Project

Intermediate/Large
Project

Code Quality
Formatting � Basic PEP 8

adherence
� Automated with Ruff
(ruff format)

Linting � or basic Flake8 � Ruff with multiple rule
sets enabled

Type checking � or basic annotations � mypy with increasing
strictness

Security scanning � � Bandit
Dead code
detection

� � Vulture

Testing
Unit tests � Basic pytest � Comprehensive pytest

with fixtures
Test coverage � or basic � pytest-cov with coverage

targets
Mocking � � pytest-mock for external

dependencies
Integration tests � � For component

interactions
Functional tests � � For key user workflows

Documentation
Code
documentation

� Basic docstrings � Comprehensive
docstrings
(Google/NumPy style)

API
documentation

� Generated with pydoc � MkDocs + mkdocstrings

User guides � Basic README
usage examples

� Comprehensive MkDocs
site with tutorials

198



Development
Stage

Simple/Beginner
Project

Intermediate/Large
Project

Version
Control
Practices
Commit
frequency

� Regular commits � Atomic, focused commits

Commit messages � Basic descriptive
messages

� Structured commit
messages with context

Branching � or basic feature
branches

� Git-flow or trunk-based
with feature branches

Code reviews � � Pull/Merge requests
with review guidelines

Automation
Local automation � � pre-commit hooks
CI pipeline � or basic � GitHub Actions with

matrix testing
CD pipeline � � Automated

deployments/releases

Packaging &
Distribution
Package
configuration

� Basic
pyproject.toml

� Comprehensive
configuration with extras

Build system � Basic setuptools � Modern build with PEP
517 support

Release process � Manual versioning � Semantic versioning with
automation

Publication � or manual PyPI
upload

� Automated PyPI
deployment via CI

199



C. Python Development Workflow Checklist

Development
Stage

Simple/Beginner
Project

Intermediate/Large
Project

Maintenance
Dependency
updates

� Manual updates � Scheduled updates with
dependabot

Security
monitoring

� � Vulnerability scanning

Performance
profiling

� � Regular profiling and
benchmarking

User feedback
channels

� � Issue templates and
contribution guidelines

C.1. Project Progression Path

For projects that start simple but grow in complexity, follow this progres-
sion:

1. Start with the essentials:

• Project structure and version control
• Virtual environment
• Basic testing
• Clear README

2. Add code quality tools incrementally:

• First add Ruff for formatting and basic linting
• Then add mypy for critical modules
• Finally add security scanning

3. Enhance testing as complexity increases:

• Add coverage reporting
• Implement mocking for external dependencies

200



C.1. Project Progression Path

• Add integration tests for component interactions

4. Improve documentation with growth:

• Start with good docstrings from day one
• Transition to MkDocs when README becomes insufficient
• Generate API documentation from docstrings

5. Automate processes as repetition increases:

• Add pre-commit hooks for local checks
• Implement CI for testing across environments
• Add CD when deployment becomes routine

Remember: Don’t overengineer! Choose the practices that add value to
your specific project and team. It’s better to implement a few practices
well than to poorly implement many.

201





D. Introduction to Python IDEs and
Editors

While this book focuses on Python development practices rather than
specific tools, your choice of development environment can significantly
impact your productivity and workflow. This appendix provides a brief
overview of popular editors and IDEs for Python development, with partic-
ular attention to how they integrate with the tools and practices discussed
throughout this book.

D.1. Visual Studio Code

Visual Studio Code (VS Code) has become one of the most popular edi-
tors for Python development due to its balance of lightweight design and
powerful features.

D.1.1. Key Features for Python Development

• Python Extension: Microsoft’s official Python extension provides
IntelliSense, linting, debugging, code navigation, and Jupyter note-
book support

• Virtual Environment Detection: Automatically detects and al-
lows switching between virtual environments

• Integrated Terminal: Run Python scripts and commands without
leaving the editor

203



D. Introduction to Python IDEs and Editors

• Debugging: Full-featured debugging with variable inspection and
breakpoints

• Extensions Ecosystem: Rich marketplace with extensions for
most Python tools

D.1.2. Integration with Development Tools

• Virtual Environments: Detects venv, conda, and other environ-
ment types; shows active environment in status bar

• Linting/Formatting: Native integration with Ruff, Black, mypy,
and other quality tools

• Testing: Test Explorer UI for pytest, unittest
• Package Management: Terminal integration for pip, Poetry,

PDM, and other package managers
• Git: Built-in Git support for commits, branches, and pull requests

D.1.3. Configuration Example

.vscode/settings.json:

{
"python.defaultInterpreterPath": "${workspaceFolder}/.venv/bin/python",
"python.formatting.provider": "none",
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {

"source.fixAll.ruff": true,
"source.organizeImports.ruff": true

},
"python.testing.pytestEnabled": true,
"python.linting.mypyEnabled": true

}

204



D.2. Neovim

D.1.4. AI-Assistant Integration

• GitHub Copilot: Code suggestions directly in the editor
• IntelliCode: AI-enhanced code completions
• Live Share: Collaborative coding sessions

D.2. Neovim

Neovim is a highly extensible text editor popular among developers who
prefer keyboard-centric workflows and extensive customization.

D.2.1. Key Features for Python Development

• Extensible Architecture: Lua-based configuration and plugin sys-
tem

• Terminal Integration: Built-in terminal emulator
• Modal Editing: Efficient text editing with different modes
• Performance: Fast startup and response, even for large files

D.2.2. Integration with Development Tools

• Language Server Protocol (LSP): Native support for Python
language servers like Pyright and Jedi

• Virtual Environments: Support through plugins and configura-
tion

• Code Completion: Various completion engines (nvim-cmp, COC)
• Linting/Formatting: Integration with tools like Ruff, Black, and

mypy
• Testing: Run tests through plugins or terminal integration

205



D. Introduction to Python IDEs and Editors

D.2.3. Configuration Example

Simplified init.lua excerpt for Python development:

-- Python LSP setup
require('lspconfig').pyright.setup{

settings = {
python = {

analysis = {
typeCheckingMode = "basic",
autoSearchPaths = true,
useLibraryCodeForTypes = true

}
}

}
}

-- Formatting on save with Black
vim.api.nvim_create_autocmd("BufWritePre", {

pattern = "*.py",
callback = function()
vim.lsp.buf.format()

end,
})

D.2.4. AI-Assistant Integration

• GitHub Copilot.vim: Code suggestions
• Neural: Code completions powered by local models

206



D.3. Emacs

D.3. Emacs

Emacs is a highly customizable text editor with a rich ecosystem of pack-
ages and a long history in the development community.

D.3.1. Key Features for Python Development

• Extensibility: Customizable with Emacs Lisp
• Org Mode: Literate programming and documentation
• Multiple Modes: Specialized modes for different file types
• Integrated Environment: Email, shell, and other tools integrated

D.3.2. Integration with Development Tools

• Python Mode: Syntax highlighting, indentation, and navigation
for Python

• Virtual Environments: Support through pyvenv, conda.el
• Linting/Formatting: Integration with Flycheck, Black, Ruff
• Testing: Run tests with pytest-emacs
• Package Management: Manage dependencies through shell inte-

gration

D.3.3. Configuration Example

Excerpt from .emacs or init.el:

;; Python development setup
(use-package python-mode
:ensure t
:config
(setq python-shell-interpreter "python3"))

207



D. Introduction to Python IDEs and Editors

(use-package blacken
:ensure t
:hook (python-mode . blacken-mode))

(use-package pyvenv
:ensure t
:config
(pyvenv-mode 1))

D.3.4. AI-Assistant Integration

• Copilot.el: GitHub Copilot integration
• ChatGPT-shell: Interact with LLMs from within Emacs

D.4. AI-Enhanced Editors

D.4.1. Cursor

Cursor (formerly Warp AI) is built on top of VS Code but focused on
AI-assisted development.

D.4.1.1. Key Features

• AI Chat: Integrated chat interface for coding assistance
• Code Explanation: Ask about selected code
• Code Generation: Generate code from natural language descrip-

tions
• VS Code Base: All VS Code features and extensions available
• Customized for AI Interaction: UI designed around AI-assisted

workflows

208



D.5. Choosing the Right Environment

D.4.1.2. Integration with Python Tools

• Inherits VS Code’s excellent Python ecosystem support
• AI features that understand Python code context
• Assistance with complex Python patterns and libraries

D.4.2. Whisper (Anthropic)

Claude Code (Whisper) from Anthropic is an AI-enhanced development
environment:

D.4.2.1. Key Features

• Terminal-Based Assistant: AI-powered code generation from the
command line

• Task Automation: Natural language for development tasks
• Context-Aware Assistance: Understands project structure and

code
• Code Explanation: In-depth explanations of complex code

D.4.2.2. Integration with Python Tools

• Works alongside existing development environments
• Can assist with tool configuration and integration
• Helps debug issues with Python tooling

D.5. Choosing the Right Environment

The best development environment depends on your specific needs:

209



D. Introduction to Python IDEs and Editors

• VS Code: Excellent for most Python developers; balances ease of
use with powerful features

• Neovim: Ideal for keyboard-focused developers who value speed
and customization

• Emacs: Great for developers who want an all-in-one environment
with deep customization

• AI-Enhanced Editors: Valuable for those looking to leverage AI
in their workflow

Consider these factors when choosing:

1. Learning curve: VS Code has a gentle learning curve, while
Neovim and Emacs require more investment

2. Performance needs: Neovim offers the best performance for large
files

3. Extensibility importance: Emacs and Neovim offer the deepest
customization

4. Team standards: Consider what your team uses for easier collab-
oration

5. AI assistance: If AI-assisted development is important, specialized
editors may offer better integration

D.6. Editor-Agnostic Best Practices

Regardless of your chosen editor, follow these best practices:

1. Learn keyboard shortcuts: They dramatically increase produc-
tivity

2. Use extensions for Python tools: Integrate the tools from this
book

3. Set up consistent formatting: Configure your editor to use the
same tools as your CI pipeline

210



D.6. Editor-Agnostic Best Practices

4. Customize for your workflow: Adapt your environment to your
specific needs

5. Version control your configuration: Track editor settings in Git
for consistency

Remember that the editor is just a tool—the development practices in
this book can be applied regardless of your chosen environment. The best
editor is the one that helps you implement good development practices
while staying out of your way during the creative process.

211





E. Python Development Tools
Reference

This reference provides brief descriptions of the development tools men-
tioned throughout the guide, organized by their primary function.

E.1. Environment & Dependency Management

• venv: Python’s built-in tool for creating isolated virtual environ-
ments.

• pip: The standard package installer for Python.
• pip-tools: A set of tools for managing Python package dependencies

with pinned versions via requirements.txt files.
• uv: A Rust-based, high-performance Python package manager and

environment manager compatible with pip.
• pipx: A tool for installing and running Python applications in iso-

lated environments.

E.2. Code Quality & Formatting

• Ruff: A fast, Rust-based Python linter and formatter that consoli-
dates multiple tools.

• Black: An opinionated Python code formatter that enforces a con-
sistent style.

213



E. Python Development Tools Reference

• isort: A utility to sort Python imports alphabetically and automat-
ically separate them into sections.

• Flake8: A code linting tool that checks Python code for style and
logical errors.

• Pylint: A comprehensive Python static code analyzer that looks for
errors and enforces coding standards.

E.3. Testing

• pytest: A powerful, flexible testing framework for Python that sim-
plifies test writing and execution.

• pytest-cov: A pytest plugin for measuring code coverage during
test execution.

• pytest-mock: A pytest plugin for creating and managing mock
objects in tests.

E.4. Type Checking

• mypy: A static type checker for Python that helps catch type-
related errors before runtime.

• pydoc: Python’s built-in documentation generator and help system.

E.5. Security & Code Analysis

• Bandit: A tool designed to find common security issues in Python
code.

• Vulture: A tool that detects unused code in Python programs.

214



E.6. Documentation

E.6. Documentation

• MkDocs: A fast and simple static site generator for building project
documentation from Markdown files.

• mkdocs-material: A Material Design theme for MkDocs.
• mkdocstrings: A MkDocs plugin that automatically generates doc-

umentation from docstrings.
• Sphinx: A comprehensive documentation tool that supports multi-

ple output formats.

E.7. Package Building & Distribution

• build: A simple, correct PEP 517 package builder for Python
projects.

• twine: A utility for publishing Python packages to PyPI securely.
• setuptools: The standard library for packaging Python projects.
• setuptools-scm: A tool that manages your Python package ver-

sions using git metadata.
• wheel: A built-package format for Python that provides faster in-

stallation.

E.8. Continuous Integration & Deployment

• GitHub Actions: GitHub’s built-in CI/CD platform for automat-
ing workflows.

• pre-commit: A framework for managing and maintaining
pre-commit hooks.

• Codecov: A tool for measuring and reporting code coverage in CI
pipelines.

215



E. Python Development Tools Reference

E.9. Version Control

• Git: A distributed version control system for tracking changes in
source code.

• GitHub/GitLab: Web-based platforms for hosting Git repositories
with collaboration features.

E.10. Project Setup & Management

• Cookiecutter: A command-line utility that creates projects from
templates, enabling consistent project setup with predefined struc-
ture and configurations. It uses a templating system to generate files
and directories based on user inputs.

• GitHub Repository Templates: A GitHub feature that allows
repositories to serve as templates for new projects. Users can gen-
erate new repositories with the same directory structure and files
without needing to install additional tools. Unlike cookiecutter,
GitHub templates don’t support parameterization but offer a zero-
installation approach to project scaffolding.

E.11. Advanced Tools

• Cython: A language that makes writing C extensions for Python
as easy as writing Python.

• Docker: A platform for developing, shipping, and running applica-
tions in containers.

• Kubernetes: An open-source system for automating deployment,
scaling, and management of containerized applications.

• Pants/Bazel: Build systems designed for monorepos and large
codebases.

216



F. Comparision of Python
Environment and Package
Management Tools

This appendix provides a side-by-side comparison of the major Python
environment and package management tools covered throughout this
book.

F.1. Comparison Table

Feature venv conda uv Hatch Poetry PDM
Core
Focus

Virtual
environ-
ments

Environments
&
packages
across
lan-
guages

Fast
pack-
age
in-
stal-
la-
tion

Project
man-
age-
ment

Dependency
manage-
ment &
packaging

Standards-
compliant
pack-
aging

Implementation
Language

Python Python Rust Python Python Python

PerformanceStandard Moderate Very
Fast

StandardModerate Fast

217



F. Comparision of Python Environment and Package Management Tools

Feature venv conda uv Hatch Poetry PDM
Virtual
Environ-
ment
Support

Built-in Built-in Built-
in

Built-
in

Built-in Optional
(PEP
582)

Lock File No (re-
quires
pip-
tools)

No (uses
explicit
envs)

Yes Yes Yes Yes

Dependency
Resolu-
tion

Basic
(via
pip)

SophisticatedEfficientBasic SophisticatedSophisticated

Non-
Python
Depen-
dencies

No Yes No No No No

Project
Config
File

None environment.ymlrequirements.txtpyproject.tomlpyproject.tomlpyproject.toml

PEP 621
Compli-
ance

N/A No N/A Yes Partial Yes

Multiple
Environ-
ment
Manage-
ment

No (one
env per
direc-
tory)

Yes No Yes No Via
config-
ura-
tion

Dependency
Groups

No Via
separate
files

Via
sepa-
rate
files

Yes Yes Yes

Package
Building

No Limited No Yes Yes Yes

218



F.2. Installation Methods

Feature venv conda uv Hatch Poetry PDM
Publishing
to PyPI

No Limited No Yes Yes Yes

Cross-
Platform
Support

Yes Yes Yes Yes Yes Yes

Best For Simple
projects,
teach-
ing

Scientific/ML
projects

Fast
in-
stal-
la-
tions,
CI
envi-
ron-
ments

Dev
work-
flow
au-
toma-
tion

Library de-
velopment

Standards-
focused
projects

Learning
Curve

Low Moderate Low ModerateModerate-
High

Moderate

Script/Task
Running

No Limited No AdvancedBasic Advanced

Community
Size/Adoption

Very
High

Very
High

GrowingModerateHigh Growing

Plugin
System

No No No Yes Limited Yes

Development
Status

Stable/MatureStable/MatureActive
De-
vel-
op-
ment

Active
De-
vel-
op-
ment

Stable/MatureActive
Devel-
op-
ment

F.2. Installation Methods

219



F. Comparision of Python Environment and Package Management Tools

Tool pip/pipx Homebrew Official Installer
Platform Package
Managers

venv Built-in
with
Python

N/A N/A N/A

conda No Yes Yes (Mini-
conda/Anaconda)

Some

uv Yes Yes Yes (curl
installer)

Growing

Hatch Yes Yes No Some
PoetryYes Yes Yes (custom

installer)
Some

PDM Yes Yes No Some

F.3. Typical Usage Patterns

Tool Typical Command Sequence
venv python -m venv .venv && source

.venv/bin/activate && pip install -r
requirements.txt

conda conda create -n myenv python=3.10 && conda
activate myenv && conda install pandas numpy

uv uv venv && source .venv/bin/activate && uv pip
sync requirements.txt

Hatch hatch init && hatch shell && hatch run test
Poetry poetry init && poetry add requests && poetry

install && poetry run python script.py
PDM pdm init && pdm add requests pytest --dev &&

pdm install && pdm run pytest

220



F.4. Use Case Recommendations

F.4. Use Case Recommendations

F.4.1. For Beginners

1. venv + pip: Simplest to understand, built-in to Python
2. uv: Fast, familiar pip-like interface with modern features

F.4.2. For Data Science/Scientific Computing

1. conda: Best support for scientific packages and non-Python depen-
dencies

2. Poetry or PDM: When standard Python packages are sufficient

F.4.3. For Library Development

1. Poetry: Great packaging and publishing workflows
2. Hatch: Excellent for multi-environment testing
3. PDM: Standards-compliant approach

F.4.4. For Application Development

1. PDM: PEP 582 mode simplifies deployment
2. Poetry: Lock file ensures reproducible environments
3. Hatch: Task management features help automate workflows

F.4.5. For CI/CD Environments

1. uv: Fastest installation speeds
2. Poetry/PDM: Reliable lock files ensure consistency

221



F. Comparision of Python Environment and Package Management Tools

F.4.6. For Teams with Mixed Experience Levels

1. Poetry: Opinionated approach enforces consistency
2. uv: Familiar interface with performance benefits
3. Hatch: Flexibility for different team workflows

F.5. Migration Paths

From To Migration Approach
pip +
require-
ments.txt

uv Use directly with existing requirements.txt

pip +
require-
ments.txt

Poetry poetry init then poetry add packages

pip +
require-
ments.txt

PDM pdm import -f requirements
requirements.txt

conda Poetry/PDMExport conda env to requirements, then
import

Pipenv Poetry poetry init + manual migration or
conversion tools

Pipenv PDM pdm import -f pipenv Pipfile
Poetry PDM pdm import -f poetry pyproject.toml

F.6. When to Consider Multiple Tools

Some projects benefit from using multiple tools for different purposes:

222



F.7. Future Trends

• conda + pip: Use conda for complex dependencies, pip for Python-
only packages

• venv + uv: Use venv for environment isolation, uv for fast package
installation

• Hatch + uv: Use Hatch for project workflows, uv for faster instal-
lations

F.7. Future Trends

The Python packaging ecosystem continues to evolve toward:

1. Standards Compliance: Increasing adoption of PEPs 518, 517,
621

2. Performance Optimization: More Rust-based tools like uv
3. Simplified Workflows: Better integration between tools
4. Improved Lock Files: More secure and deterministic builds
5. Better Environment Management: Alternatives to traditional

virtual environments

By understanding the strengths and trade-offs of each tool, you can select
the approach that best fits your specific project requirements and team
preferences.

223





G. Python Development Pipeline
Scaffold Python Script

#!/bin/bash
# scaffold_python_project.sh - A simple script to create a Python project with best practices
# Usage: ./scaffold_python_project.sh my_project

if [ -z "$1" ]; then
echo "Please provide a project name."
echo "Usage: ./scaffold_python_project.sh my_project"
exit 1

fi

PROJECT_NAME=$1
# Convert hyphens to underscores for Python package naming conventions
PACKAGE_NAME=$(echo $PROJECT_NAME | tr '-' '_')

echo "Creating project: $PROJECT_NAME"
echo "Package name will be: $PACKAGE_NAME"

# Create project directory
mkdir -p $PROJECT_NAME
cd $PROJECT_NAME

# Create basic structure following the recommended src layout
# The src layout enforces proper package installation and creates clear boundaries

225



G. Python Development Pipeline Scaffold Python Script

mkdir -p src/$PACKAGE_NAME tests docs

# Create package files
# __init__.py makes the directory a Python package
touch src/$PACKAGE_NAME/__init__.py
touch src/$PACKAGE_NAME/main.py

# Create test files - keeping tests separate but adjacent to the implementation
# This follows the principle of separating implementation from tests
touch tests/__init__.py
touch tests/test_main.py

# Create documentation placeholder - establishing documentation from the start
# Even minimal docs are better than no docs
echo "# $PROJECT_NAME Documentation" > docs/index.md

# Create README.md with basic information
# README is the first document anyone sees and should provide clear instructions
echo "# $PROJECT_NAME

A Python project created with best practices.

## Installation

\`\`\`bash
pip install $PROJECT_NAME
\`\`\`

## Usage

\`\`\`python
from $PACKAGE_NAME import main
\`\`\`

226



## Development

\`\`\`bash
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\\Scripts\\activate

# Install in development mode
pip install -e .

# Run tests
pytest
\`\`\`
" > README.md

# Create .gitignore file to exclude unnecessary files from version control
# This prevents committing files that should not be in the repository
echo "# Python
__pycache__/
*.py[cod]
*$py.class
*.so
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/

227



G. Python Development Pipeline Scaffold Python Script

var/
wheels/
*.egg-info/
.installed.cfg
*.egg

# Virtual environments
# Never commit virtual environments to version control
.venv/
venv/
ENV/

# Testing
.pytest_cache/
.coverage
htmlcov/

# Documentation
docs/_build/

# IDE
.idea/
.vscode/
*.swp
*.swo
" > .gitignore

# Create pyproject.toml for modern Python packaging
# This follows PEP 517/518 standards and centralizes project configuration
echo "[build-system]
requires = [\"setuptools>=61.0\", \"wheel\"]
build-backend = \"setuptools.build_meta\"

228



[project]
name = \"$PROJECT_NAME\"
version = \"0.1.0\"
description = \"A Python project created with best practices\"
readme = \"README.md\"
requires-python = \">=3.8\"
authors = [

{name = \"Your Name\", email = \"your.email@example.com\"}
]

[project.urls]
\"Homepage\" = \"https://github.com/yourusername/$PROJECT_NAME\"

# Specify the src layout for better package isolation
[tool.setuptools]
package-dir = {\"\" = \"src\"}
packages = [\"$PACKAGE_NAME\"]

# Configure pytest to look in the tests directory
[tool.pytest.ini_options]
testpaths = [\"tests\"]
" > pyproject.toml

# Create requirements.in for direct dependencies
# This approach is cleaner than freezing everything with pip freeze
echo "# Project dependencies
# Add your dependencies here, e.g.:
# requests>=2.25.0
" > requirements.in

# Create example main.py with docstrings and type hints
# Starting with good documentation and typing practices from the beginning
echo "\"\"\"Main module for $PROJECT_NAME.\"\"\"

229



G. Python Development Pipeline Scaffold Python Script

def example_function(text: str) -> str:
\"\"\"Return a greeting message.

Args:
text: The text to include in the greeting.

Returns:
A greeting message.

\"\"\"
return f\"Hello, {text}!\"

" > src/$PACKAGE_NAME/main.py

# Create example test file
# Tests verify that code works as expected and prevent regressions
echo "\"\"\"Tests for the main module.\"\"\"

from $PACKAGE_NAME.main import example_function

def test_example_function():
\"\"\"Test the example function returns the expected greeting.\"\"\"
result = example_function(\"World\")
assert result == \"Hello, World!\"

" > tests/test_main.py

# Initialize git repository
# Version control should be established from the very beginning
git init
git add .
git commit -m "Initial project setup"

echo ""
echo "Project $PROJECT_NAME created successfully!"
echo ""

230



echo "Next steps:"
echo "1. cd $PROJECT_NAME"
echo "2. python -m venv .venv"
echo "3. source .venv/bin/activate # On Windows: .venv\\Scripts\\activate"
echo "4. pip install -e ."
echo "5. pytest"
echo ""
echo "Happy coding!"

231





H. Cookiecutter Template

This appendix introduces and explains the companion cookiecutter tem-
plate for the Python Development Pipeline described in this book. The
template allows you to quickly scaffold new Python projects that follow
all the recommended practices, saving you time and ensuring consistency
across your projects.

H.1. What is Cookiecutter?

Cookiecutter is a command-line utility that creates projects from tem-
plates. It takes a template directory containing a cookiecutter.json
file with template variables and replaces them with user-provided values,
generating a project directory structure with all necessary files.

H.2. Getting Started with the Template

H.2.1. Prerequisites

• Python 3.7 or later
• pip package manager

233



H. Cookiecutter Template

H.2.2. Installation

First, install cookiecutter:

pip install cookiecutter

H.2.3. Creating a New Project

To create a new project using our Python Development Pipeline tem-
plate:

cookiecutter gh:username/python-dev-pipeline-cookiecutter

You’ll be prompted to provide information about your project, such as:

• Project name
• Author information
• Python version requirements
• License type
• Development level (basic or advanced)
• Documentation preferences
• CI/CD preferences
• Package manager choice (pip-tools or uv)

After answering these questions, cookiecutter will generate a complete
project structure with all the configuration files and setup based on your
choices.

H.3. Template Features

The template implements all the best practices discussed throughout this
book:

234



H.3. Template Features

H.3.1. Project Structure

• Uses the recommended src layout for better package isolation
• Properly organized test directory
• Documentation setup with MkDocs (if selected)
• Clear separation of concerns across files and directories

H.3.2. Development Environment

• Configured virtual environment instructions
• Dependency management using either pip-tools or uv
• requirements.in and requirements-dev.in files for clean depen-

dency specification

H.3.3. Code Quality Tools

• Ruff for formatting and linting
• mypy for type checking
• Bandit for security analysis (with advanced setup)
• Pre-configured with sensible defaults in pyproject.toml

H.3.4. Testing

• pytest setup with example tests
• Coverage configuration
• Test helper fixtures

235



H. Cookiecutter Template

H.3.5. Documentation

• MkDocs with Material theme (if selected)
• API documentation generation with mkdocstrings
• Template pages for quickstart, examples, and API reference

H.3.6. CI/CD

• GitHub Actions workflows for testing, linting, and type checking
• Publish workflow for PyPI deployment
• Matrix testing across Python versions

H.4. Customization Options

The template offers several customization options during generation:

H.4.1. Basic vs. Advanced Setup

• Basic: Lighter configuration focused on essential tools
• Advanced: Full suite of tools including security scanning, stricter

type checking, and comprehensive CI/CD

H.4.2. Documentation Options

• Choose whether to include MkDocs documentation setup
• If included, get a complete documentation structure ready for con-

tent

236



H.5. Template Structure

H.4.3. CI/CD Options

• Include GitHub Actions workflows for automated testing and deploy-
ment

• Configure publishing workflows for PyPI integration

H.5. Template Structure

The generated project follows this structure:

your_project/
��� .github/ # GitHub specific configuration
� ��� workflows/ # GitHub Actions workflows
� ��� ci.yml # Continuous Integration workflow
� ��� publish.yml # Package publishing workflow
��� src/ # Main source code directory
� ��� your_package/ # Actual Python package
� ��� __init__.py # Makes the directory a package
� ��� main.py # Example module
��� tests/ # Test suite
� ��� __init__.py # Makes tests importable
� ��� test_main.py # Tests for main.py
��� docs/ # Documentation
� ��� index.md # Main documentation page
� ��� examples.md # Example usage
��� .gitignore # Files to exclude from Git
��� LICENSE # License file
��� README.md # Project overview
��� requirements.in # Direct dependencies (human-maintained)
��� requirements-dev.in # Development dependencies
��� pyproject.toml # Project & tool configuration

237



H. Cookiecutter Template

H.6. Post-Generation Steps

After creating your project, the template provides instructions for:

1. Creating and activating a virtual environment
2. Installing dependencies
3. Setting up version control
4. Running initial tests

The generated README.md includes detailed development setup instruc-
tions specific to your configuration choices.

H.7. Extending the Template

You can extend or customize the template for your specific needs:

H.7.1. Adding Custom Components

Fork the template repository and add additional files or configurations
specific to your organization or preferences.

H.7.2. Modifying Tool Configurations

The pyproject.toml file contains all tool configurations and can be ad-
justed to match your coding standards and preferences.

H.7.3. Creating Specialized Variants

Create specialized variants of the template for different types of projects
(e.g., web applications, data science, CLI tools) while maintaining the core
best practices.

238



H.8. Best Practices for Using the Template

H.8. Best Practices for Using the Template

1. Use for new projects: The template is designed for new projects
rather than retrofitting existing ones.

2. Commit immediately after generation: Make an initial commit
right after generating the project to establish a clean baseline.

3. Review and adjust configurations: While the defaults are sensi-
ble, review and adjust configurations to match your specific project
needs.

4. Keep dependencies updated: Regularly update the requirements.in
files as your project evolves.

5. Follow the workflow: The template sets up the infrastructure, but
you still need to follow the development workflow described in this
book.

H.9. Conclusion

The Python Development Pipeline cookiecutter template encapsulates the
practices and principles discussed throughout this book, allowing you to
rapidly bootstrap projects with best practices already in place. By using
this template, you ensure consistency across projects and can focus more
on solving problems rather than setting up infrastructure.

Whether you’re starting a small personal project or a larger team effort,
this template provides a solid foundation that can scale with your needs
while maintaining professional development standards.

239





I. Hatch - Modern Python Project
Management

I.1. Introduction to Hatch

Hatch is a modern, extensible Python project management tool designed
to simplify the development workflow through standardization and au-
tomation. Created by Ofek Lev and first released in 2017, Hatch has
undergone significant evolution to become a comprehensive solution that
handles environment management, dependency resolution, building, and
publishing.

Unlike traditional tools that focus primarily on packaging or dependency
management, Hatch takes a holistic approach to project management, ad-
dressing the entire development lifecycle. What sets Hatch apart is its
flexibility, extensibility, and focus on developer experience through an in-
tuitive CLI and plugin system.

I.2. Key Features of Hatch

I.2.1. Project Management

Hatch provides comprehensive project management capabilities:

• Project initialization: Quickly set up standardized project struc-
tures

241



I. Hatch - Modern Python Project Management

• Flexible configuration: Standardized configuration in pyproject.toml
• Version management: Easily bumper version numbers
• Script running: Execute defined project scripts

I.2.2. Environment Management

One of Hatch’s standout features is its sophisticated environment han-
dling:

• Multiple environments per project: Define development, test-
ing, documentation environments

• Matrix environments: Test across Python versions and depen-
dency sets

• Isolated environments: Clean, reproducible development spaces
• Environment synchronization: Keep environments updated

I.2.3. Build and Packaging

Hatch streamlines the packaging workflow:

• Standards-compliant: Implements PEP 517/518 build system
• Multiple build targets: Source distributions and wheels
• Build hooks: Customize the build process
• Metadata standardization: PEP 621 compliant metadata

I.2.4. Extensibility

Hatch is designed for extensibility:

• Plugin system: Extend functionality through plugins
• Custom commands: Add project-specific commands
• Environment customization: Define environment-specific tools
• Build customization: Extend the build process

242



I.3. Getting Started with Hatch

I.3. Getting Started with Hatch

I.3.1. Installation

Hatch can be installed through several methods:

# Using pipx (recommended)
pipx install hatch

# Using pip
pip install hatch

# Using conda
conda install -c conda-forge hatch

# Using Homebrew on macOS
brew install hatch

Verify your installation:

hatch --version

I.3.2. Creating a New Project

Create a new project with Hatch:

# Interactive project creation
hatch new

# Non-interactive with defaults
hatch new my-project

243



I. Hatch - Modern Python Project Management

# With specific options
hatch new my-project --init

The project structure might look like:

my-project/
��� src/
� ��� my_project/
� ��� __init__.py
��� tests/
� ��� __init__.py
��� pyproject.toml
��� README.md

I.3.3. Basic Configuration

Hatch uses pyproject.toml for configuration:

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "my-project"
version = "0.1.0"
description = "A sample Python project"
readme = "README.md"
requires-python = ">=3.8"
license = {text = "MIT"}
authors = [

{name = "Your Name", email = "your.email@example.com"},
]

244



I.3. Getting Started with Hatch

dependencies = [
"requests>=2.28.0",
"pydantic>=2.0.0",

]

[project.optional-dependencies]
test = [

"pytest>=7.0.0",
"pytest-cov>=4.0.0",

]
dev = [

"black>=23.0.0",
"ruff>=0.0.220",

]

[tool.hatch.envs.default]
dependencies = [

"pytest>=7.0.0",
"black>=23.0.0",
"ruff>=0.0.220",

]

[tool.hatch.envs.test]
dependencies = [

"pytest>=7.0.0",
"pytest-cov>=4.0.0",

]

245



I. Hatch - Modern Python Project Management

I.4. Essential Hatch Commands

I.4.1. Environment Management

# Create and activate the default environment
hatch shell

# Create and activate a specific environment
hatch shell test

# Run a command in the default environment
hatch run pytest

# Run a command in a specific environment
hatch run test:pytest

# List available environments
hatch env show

# Clean all environments
hatch env prune

I.4.2. Dependency Management

# Install project dependencies
hatch env create

# Update all dependencies
hatch env update

246



I.4. Essential Hatch Commands

# Update dependencies in a specific environment
hatch env update test

# Show installed packages
hatch env show

I.4.3. Building and Publishing

# Build the package
hatch build

# Build specific formats
hatch build -t wheel

# Publish to PyPI
hatch publish

# Publish to TestPyPI
hatch publish -r test

I.4.4. Version Management

# Show current version
hatch version

# Bump the version (patch, minor, major)
hatch version patch
hatch version minor
hatch version major

247



I. Hatch - Modern Python Project Management

# Set a specific version
hatch version 1.2.3

I.5. Advanced Hatch Features

I.5.1. Environment Matrix

Hatch can manage testing across multiple Python versions:

[tool.hatch.envs.test]
dependencies = [

"pytest",
]

[[tool.hatch.envs.test.matrix]]
python = ["3.8", "3.9", "3.10", "3.11"]

Run commands across all environments:

# Run tests across all Python versions
hatch run test:all:pytest

I.5.2. Custom Scripts

Define project-specific scripts:

[tool.hatch.envs.default.scripts]
test = "pytest"
lint = "ruff check ."
format = "black ."

248



I.5. Advanced Hatch Features

# Complex scripts
dev = [

"format",
"lint",
"test",

]

Run these scripts:

# Run the test script
hatch run test

# Run the complete dev script
hatch run dev

I.5.3. Environment Features

Enable specific tools in environments:

[tool.hatch.envs.default]
features = ["dev", "test"]
dependencies = [

"black",
"pytest",

]

[tool.hatch.envs.default.scripts]
test = "pytest {args}"
format = "black {args:src tests}"

249



I. Hatch - Modern Python Project Management

I.5.4. Build Hooks

Customize the build process:

[tool.hatch.build.hooks.vcs]
version-file = "src/my_project/_version.py"

[tool.hatch.build.hooks.custom]
path = "my_custom_build_hook.py"

I.6. Best Practices with Hatch

I.6.1. Project Structure

A recommended structure for Hatch projects:

my_project/
��� src/
� ��� my_package/ # Main package code
� ��� __init__.py
� ��� module.py
��� tests/ # Test files
� ��� __init__.py
� ��� test_module.py
��� docs/ # Documentation
��� pyproject.toml # Project configuration
��� README.md # Project documentation

To use this source layout:

250



I.6. Best Practices with Hatch

[tool.hatch.build]
packages = ["src/my_package"]

I.6.2. Environment Management Strategies

1. Specialized Environments: Create purpose-specific environments
[tool.hatch.envs.default]
dependencies = ["pytest", "black", "ruff"]

[tool.hatch.envs.docs]
dependencies = ["sphinx", "sphinx-rtd-theme"]

[tool.hatch.envs.security]
dependencies = ["bandit", "safety"]

2. Matrix Testing: Test across Python versions
[[tool.hatch.envs.test.matrix]]
python = ["3.8", "3.9", "3.10", "3.11"]

3. Feature Toggles: Organize functionality by feature
[tool.hatch.envs.default]
features = ["test", "lint"]

I.6.3. Version Control Practices

1. Configure version source: Use git tags or a version file
[tool.hatch.version]
source = "vcs" # or "file"

251



I. Hatch - Modern Python Project Management

2. Automate version bumping: Use Hatch’s version commands in
your workflow
# Before release
hatch version minor
git commit -am "Bump version to $(hatch version)"
git tag v$(hatch version)

I.6.4. Integration with Development Tools

Configure tools like Black and Ruff directly in pyproject.toml:

[tool.black]
line-length = 88
target-version = ["py39"]

[tool.ruff]
select = ["E", "F", "I"]
line-length = 88

I.7. Integration with Development Workflows

I.7.1. IDE Integration

Hatch environments work with most Python IDEs:

I.7.1.1. VS Code

1. Create environments: hatch env create
2. Find the environment path: hatch env find default
3. Select the interpreter from this path in VS Code

252



I.7. Integration with Development Workflows

I.7.1.2. PyCharm

1. Create environments: hatch env create
2. Find the environment path: hatch env find default
3. Add the interpreter in PyCharm settings

I.7.2. CI/CD Integration

I.7.2.1. GitHub Actions Example

name: Python CI

on:
push:

branches: [ main ]
pull_request:

branches: [ main ]

jobs:
test:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:

python-version: "3.10"

- name: Install Hatch
run: pip install hatch

253



I. Hatch - Modern Python Project Management

- name: Run tests
run: hatch run test:pytest

- name: Run linters
run: hatch run lint:all

I.8. Troubleshooting Common Issues

I.8.1. Environment Creation Failures

If environments fail to create:

# Show detailed errors
hatch env create -v

# Try creating with verbose output
hatch -v env create

# Check for conflicting dependencies
hatch dep show

I.8.2. Build Issues

For build-related problems:

# Verbose build output
hatch build -v

# Clean build artifacts
hatch clean

254



I.9. Comparison with Other Tools

# Check configuration
hatch project metadata

I.8.3. Plugin Problems

If plugins aren’t working:

# List installed plugins
hatch plugin list

# Update plugins
pip install -U hatch-plugin-name

I.9. Comparison with Other Tools

I.9.1. Hatch vs. Poetry

• Hatch: More flexible, multiple environments, standards-focused
• Poetry: More opinionated, stronger dependency resolution
• Key difference: Hatch’s multiple environments per project vs. Po-

etry’s single environment approach

I.9.2. Hatch vs. PDM

• Hatch: Focus on the entire development workflow
• PDM: Stronger focus on dependency management with PEP 582

support
• Key difference: Hatch’s broader scope vs. PDM’s emphasis on

dependencies

255



I. Hatch - Modern Python Project Management

I.9.3. Hatch vs. pip + venv

• Hatch: Integrated environment and project management
• pip + venv: Separate tools requiring manual coordination
• Key difference: Hatch’s automation vs. traditional manual ap-

proach

I.10. When to Use Hatch

Hatch is particularly well-suited for:

1. Complex Development Workflows: Multiple environments, test-
ing matrices

2. Teams with Diverse Projects: Standardization across different
project types

3. Open Source Maintainers: Multiple environment testing and
streamlined releases

4. Projects Requiring Customization: Plugin system for special-
ized needs

Hatch might not be ideal for:

1. Very Simple Scripts: Might be overkill for trivial projects
2. Teams Heavily Invested in Poetry: Migration costs might out-

weigh benefits
3. Projects with Unusual Build Systems: Some specialized build

needs might require additional customization

I.11. Conclusion

Hatch represents a modern approach to Python project management that
emphasizes flexibility, standards compliance, and developer experience.

256



I.11. Conclusion

Its unique multi-environment capabilities, combined with comprehensive
project lifecycle management, make it a powerful choice for both applica-
tion and library development.

While newer than some alternatives like Poetry, Hatch’s strict adherence
to Python packaging standards ensures compatibility with the broader
ecosystem. Its plugin system and flexible configuration options allow it to
adapt to a wide range of project needs, from simple libraries to complex
applications.

For developers looking for a tool that can grow with their projects and
adapt to various workflows, Hatch provides a compelling combination of
power and flexibility. Its focus on standardization and automation helps
reduce the cognitive overhead of project management, allowing developers
to focus more on writing code and less on managing tooling.

257





J. Using Conda for Environment
Management

J.1. Introduction to Conda

Conda is a powerful open-source package and environment management
system that runs on Windows, macOS, and Linux. While similar to the
virtual environment tools covered in the main text, conda offers distinct
advantages for certain Python workflows, particularly in data science, sci-
entific computing, and research domains.

Unlike tools that focus solely on Python packages, conda can package
and distribute software for any language, making it especially valuable
for projects with complex dependencies that extend beyond the Python
ecosystem.

J.2. When to Consider Conda

Conda is particularly well-suited for:

• Data science projects requiring scientific packages (NumPy, pan-
das, scikit-learn, etc.)

• Research environments with mixed-language requirements
(Python, R, C/C++ libraries)

• Projects with complex binary dependencies that are difficult
to compile

259



J. Using Conda for Environment Management

• Cross-platform development where consistent environments
across operating systems are crucial

• GPU-accelerated computing requiring specific CUDA versions
• Bioinformatics, computational physics, and other special-

ized scientific domains

J.3. Conda vs. Other Environment Tools

Feature Conda venv + pip uv
Focus Any language

packages
Python packages Python

packages
Binary package
distribution

Yes (pre-
compiled)

Limited Limited

Dependency
resolution

Environment-
level solver

Package-level solver Fast,
improved
solver

Platform
support

Windows,
macOS,
Linux

Windows, macOS,
Linux

Windows,
macOS,
Linux

Non-Python
dependencies

Excellent Limited Limited

Speed Moderate Moderate Very fast
Scientific
package
support

Excellent Good Good

260



J.4. Getting Started with Conda

J.4. Getting Started with Conda

J.4.1. Installation

Conda is available through several distributions:

1. Miniconda: Minimal installer containing just conda and its depen-
dencies

2. Anaconda: Full distribution including conda and 250+ popular
data science packages

For most development purposes, Miniconda is recommended as it provides
a minimal base that you can build upon as needed.

To install Miniconda:

# Linux
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

# macOS
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash Miniconda3-latest-MacOSX-x86_64.sh

# Windows
# Download the installer from https://docs.conda.io/en/latest/miniconda.html
# and run it

J.4.2. Basic Conda Commands

J.4.2.1. Creating Environments

261



J. Using Conda for Environment Management

# Create a new environment with Python 3.10
conda create --name myenv python=3.10

# Create environment with specific packages
conda create --name datasci python=3.10 numpy pandas matplotlib

# Create environment from file
conda env create --file environment.yml

J.4.2.2. Activating and Deactivating Environments

# Activate an environment
conda activate myenv

# Deactivate current environment
conda deactivate

J.4.2.3. Managing Packages

# Install packages
conda install numpy pandas

# Install from specific channel
conda install -c conda-forge scikit-learn

# Update packages
conda update numpy

# Remove packages

262



J.5. Environment Files with Conda

conda remove pandas

# List installed packages
conda list

J.4.2.4. Environment Management

# List all environments
conda env list

# Remove an environment
conda env remove --name myenv

# Export environment to file
conda env export > environment.yml

# Clone an environment
conda create --name newenv --clone oldenv

J.5. Environment Files with Conda

Conda uses YAML files to define environments, making them easily share-
able and reproducible:

# environment.yml
name: datasci
channels:

- conda-forge
- defaults

dependencies:

263



J. Using Conda for Environment Management

- python=3.10
- numpy=1.23
- pandas>=1.4
- matplotlib
- scikit-learn
- pip
- pip:

- some-package-only-on-pypi

This file defines: - The environment name (datasci) - Channels to search
for packages (with preference order) - Conda packages with optional ver-
sion constraints - Additional pip packages to install

Create this environment with:

conda env create -f environment.yml

J.6. Best Practices for Conda

J.6.1. Channel Management

Conda packages come from “channels.” The main ones are:

• defaults: Official Anaconda channel
• conda-forge: Community-led channel with more up-to-date pack-

ages

For consistent environments, specify channels explicitly in your environ-
ment files and consider adding channel priority:

channels:
- conda-forge
- defaults

264



J.6. Best Practices for Conda

This prioritizes conda-forge packages over defaults when both are avail-
able.

J.6.2. Minimizing Environment Size

Conda environments can become large. Keep them streamlined by:

1. Only installing what you need
2. Using the --no-deps flag when appropriate
3. Considering a minimal base environment with conda create

--name myenv python

J.6.3. Managing Conflicting Dependencies

When facing difficult dependency conflicts:

# Create environment with strict solver
conda create --name myenv python=3.10 --strict-channel-priority

# Or use the libmamba solver for better resolution
conda install -n base conda-libmamba-solver
conda create --name myenv python=3.10 --solver=libmamba

J.6.4. Combining Conda with pip

While conda can install most packages, some are only available on PyPI.
The recommended approach:

1. Install all conda-available packages first using conda
2. Then install PyPI-only packages using pip

This approach is implemented automatically when using an environ-
ment.yml file with a pip section.

265



J. Using Conda for Environment Management

J.6.5. Environment Isolation from System Python

Avoid using your system Python installation with conda. Instead:

# Explicitly create all environments with a specific Python version
conda create --name myenv python=3.10

J.7. Integration with Development Workflows

J.7.1. Using Conda with VS Code

VS Code can automatically detect and use conda environments:

1. Install the Python extension
2. Open the Command Palette (Ctrl+Shift+P)
3. Select “Python: Select Interpreter”
4. Choose your conda environment from the list

J.7.2. Using Conda with Jupyter

Conda integrates well with Jupyter notebooks:

# Install Jupyter in your environment
conda install -c conda-forge jupyter

# Register your conda environment as a Jupyter kernel
conda install -c conda-forge ipykernel
python -m ipykernel install --user --name=myenv --display-name="Python (myenv)"

266



J.8. Common Pitfalls and Solutions

J.7.3. CI/CD with Conda

For GitHub Actions, you can use conda environments:

name: Python CI with Conda

on: [push, pull_request]

jobs:
build:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up conda
uses: conda-incubator/setup-miniconda@v2
with:

python-version: 3.10
environment-file: environment.yml
auto-activate-base: false

- name: Run tests
shell: bash -l {0}
run: |

conda activate myenv
pytest

J.8. Common Pitfalls and Solutions

J.8.1. Slow Environment Creation

Conda environments can take time to create due to dependency resolu-
tion:

267



J. Using Conda for Environment Management

# Use the faster libmamba solver
conda install -n base conda-libmamba-solver
conda create --name myenv python=3.10 numpy pandas --solver=libmamba

J.8.2. Conflicting Channels

Mixing packages from different channels can cause conflicts:

# Use strict channel priority
conda config --set channel_priority strict

J.8.3. Large Environment Sizes

Conda environments can grow large, especially with the Anaconda distri-
bution:

# Start minimal and add only what you need
conda create --name myenv python=3.10
conda install -n myenv numpy pandas

# Or use mamba for more efficient installations
conda install -c conda-forge mamba
mamba create --name myenv python=3.10 numpy pandas

J.9. Mamba: A Faster Alternative

For large or complex environments, consider mamba, a reimplementation
of conda’s package manager in C++:

268



J.10. Conclusion

# Install mamba
conda install -c conda-forge mamba

# Use mamba with the same syntax as conda
mamba create --name myenv python=3.10 numpy pandas
mamba install -n myenv scikit-learn

Mamba offers significant speed improvements for environment creation
and package installation while maintaining compatibility with conda com-
mands.

J.10. Conclusion

Conda provides a robust solution for environment management, particu-
larly valuable for scientific computing, data science, and research appli-
cations. While more complex than venv, it solves specific problems that
other tools cannot easily address, especially when dealing with non-Python
dependencies or cross-platform binary distribution.

For projects focusing purely on Python dependencies without complex bi-
nary requirements, the venv and uv approaches covered in the main text
may provide simpler workflows. However, understanding conda remains
valuable for many Python practitioners, especially those working in scien-
tific domains.

269





K. Getting Started with venv

K.1. Introduction to venv

The venv module is Python’s built-in tool for creating virtual environ-
ments. Introduced in Python 3.3 and standardized in PEP 405, it has
become the official recommended way to create isolated Python environ-
ments. As a module in the standard library, venv is immediately available
with any Python installation, requiring no additional installation step.

Virtual environments created with venv provide isolated spaces where
Python projects can have their own dependencies, regardless of what de-
pendencies other projects may have. This solves the common problem
of conflicting package requirements across different projects and prevents
changes to one project from affecting others.

K.2. Why Use venv?

Virtual environments are essential in Python development for several rea-
sons:

1. Dependency Isolation: Each project can have its own dependen-
cies, regardless of other projects’ requirements

2. Consistent Environments: Ensures reproducible development
and deployment environments

3. Clean Testing: Test against specific package versions without af-
fecting the system Python

271



K. Getting Started with venv

4. Conflict Prevention: Avoids “dependency hell” where different
projects need different versions of the same package

5. Project Organization: Clearly separates project dependencies
from system or global packages

K.3. Getting Started with venv

K.3.1. Creating a Virtual Environment

To create a virtual environment using venv, open a terminal and run:

# Basic syntax
python -m venv /path/to/new/virtual/environment

# Common usage (create a .venv directory in your project)
python -m venv .venv

The command creates a directory containing: - A Python interpreter copy
- The pip package manager - A basic set of installed libraries - Scripts to
activate the environment

K.3.2. Activating the Environment

Before using the virtual environment, you need to activate it. The acti-
vation process adjusts your shell’s PATH to prioritize the virtual environ-
ment’s Python interpreter and tools.

K.3.2.1. On Windows:

272



K.3. Getting Started with venv

# Command Prompt
.venv\Scripts\activate.bat

# PowerShell
.venv\Scripts\Activate.ps1

K.3.2.2. On macOS and Linux:

source .venv/bin/activate

After activation, your shell prompt typically changes to indicate the active
environment:

(.venv) user@computer:~/project$

All Python and pip commands now use the virtual environment’s versions
instead of the system ones.

K.3.3. Deactivating the Environment

When you’re done working on the project, deactivate the environment:

deactivate

This restores your shell to its original state, using the system Python
interpreter.

273



K. Getting Started with venv

K.4. Advanced venv Options

K.4.1. Creating Environments with Specific Python Versions

To create an environment with a specific Python version, use that version’s
interpreter:

# Using Python 3.8
python3.8 -m venv .venv

# On Windows with py launcher
py -3.8 -m venv .venv

K.4.2. Creating Environments Without pip

By default, venv installs pip in new environments. To create one without
pip:

python -m venv --without-pip .venv

K.4.3. Creating System Site-packages Access

Normally, virtual environments are isolated from system site-packages. To
allow access:

python -m venv --system-site-packages .venv

This creates an environment that can see system packages, but newly
installed packages still go into the virtual environment.

274



K.5. Managing Dependencies with venv

K.4.4. Upgrading pip in a New Environment

Virtual environments often include an older pip version. It’s good practice
to upgrade:

# After activating the environment
pip install --upgrade pip

K.5. Managing Dependencies with venv

While venv creates the environment, you’ll use pip to manage packages
within it.

K.5.1. Installing Packages

With your environment activated:

# Install individual packages
pip install requests

# Install with version constraints
pip install "django>=4.0,<5.0"

K.5.2. Tracking Dependencies

To track installed packages:

# Generate a requirements file
pip freeze > requirements.txt

This creates a text file listing all installed packages and their versions.

275



K. Getting Started with venv

K.5.3. Installing from Requirements

To recreate an environment elsewhere:

# Create and activate a new environment
python -m venv .venv
source .venv/bin/activate # or Windows equivalent

# Install dependencies
pip install -r requirements.txt

K.6. Best Practices with venv

K.6.1. Directory Naming Conventions

Common virtual environment directory names include:

• .venv: Hidden directory (less visible clutter)
• venv: Explicit directory name
• env: Shorter alternative

The .venv name is increasingly popular as it: - Keeps it hidden in file
browsers - Makes it easy to add to .gitignore - Is recognized by many
IDEs and tools

K.6.2. Version Control Integration

Never commit virtual environment directories to version control. Add
them to .gitignore:

276



K.6. Best Practices with venv

# .gitignore
.venv/
venv/
env/

K.6.3. Environment Management Across Projects

Create a new virtual environment for each project:

# Project A
cd project_a
python -m venv .venv

# Project B
cd ../project_b
python -m venv .venv

K.6.4. IDE Integration

Most Python IDEs integrate well with venv environments:

K.6.4.1. VS Code

1. Open your project folder
2. Press Ctrl+Shift+P
3. Select “Python: Select Interpreter”
4. Choose the environment from the list

277



K. Getting Started with venv

K.6.4.2. PyCharm

1. Go to Settings → Project → Python Interpreter
2. Click the gear icon → Add
3. Select “Existing Environment” and navigate to the environment’s

Python

K.7. Comparing venv with Other Tools

K.7.1. venv vs. virtualenv

virtualenv is a third-party package that inspired the creation of venv.

• venv: Built into Python, no installation needed, slightly fewer fea-
tures

• virtualenv: Third-party package, more features, better backwards
compatibility

For most modern Python projects, venv is sufficient, but virtualenv
offers some advanced options and supports older Python versions.

K.7.2. venv vs. conda

While both create isolated environments, they serve different purposes:

• venv: Python-specific, lightweight, manages only Python packages
• conda: Cross-language package manager, handles non-Python de-

pendencies, preferred for scientific computing

278



K.8. Troubleshooting Common Issues

K.7.3. venv vs. Poetry/PDM

These are newer tools that combine dependency management with virtual
environments:

• venv+pip: Separate tools for environments and package manage-
ment

• Poetry/PDM: All-in-one solutions with lock files, dependency res-
olution, packaging

K.8. Troubleshooting Common Issues

K.8.1. Activation Script Not Found

If you can’t find the activation script:

# List environment directory contents
ls -la .venv/bin # macOS/Linux
dir .venv\Scripts # Windows

Make sure the environment was created successfully and you’re using the
correct path.

K.8.2. Packages Not Found After Installation

If packages are installed but not importable:

1. Verify the environment is activated (check prompt prefix)
2. Check if you have multiple Python installations
3. Reinstall the package in the active environment

279



K. Getting Started with venv

K.8.3. Permission Issues

If you encounter permission errors:

# On macOS/Linux
python -m venv --prompt myproject .venv

# On Windows, try running as administrator or using user directory

K.9. Script Examples for venv Workflows

K.9.1. Project Setup Script

#!/bin/bash
# setup_project.sh

# Create project directory
mkdir -p my_project
cd my_project

# Create basic structure
mkdir -p src/my_package tests docs

# Create virtual environment
python -m venv .venv

# Activate environment (adjust for your shell)
source .venv/bin/activate

# Upgrade pip
pip install --upgrade pip

280



K.9. Script Examples for venv Workflows

# Install initial dev packages
pip install pytest black

# Create initial requirements
pip freeze > requirements.txt

echo "Project setup complete! Activate with: source .venv/bin/activate"

K.9.2. Environment Recreation Script

#!/bin/bash
# recreate_env.sh

# Remove old environment if it exists
rm -rf .venv

# Create fresh environment
python -m venv .venv

# Activate
source .venv/bin/activate

# Upgrade pip
pip install --upgrade pip

# Install dependencies
pip install -r requirements.txt

echo "Environment recreated successfully!"

281



K. Getting Started with venv

K.10. Conclusion

The venv module provides a simple, reliable way to create isolated Python
environments directly from the standard library. While newer tools offer
more features and automation, venv remains a fundamental building block
of Python development workflows, offering an excellent balance of simplic-
ity and utility.

For most Python projects, the combination of venv and pip provides
a solid foundation for environment management. As projects grow in
complexity, you can build upon this foundation with additional tools while
maintaining the same core principles of isolation and reproducibility.

282



L. UV - High-Performance Python
Package Management

L.1. Introduction to uv

uv is a modern, high-performance Python package installer and resolver
written in Rust. Developed by Astral, it represents a significant evolution
in Python tooling, designed to address the performance limitations of tradi-
tional Python package management tools while maintaining compatibility
with the existing Python packaging ecosystem.

Unlike older tools that are written in Python itself, uv’s implementation
in Rust gives it exceptional speed advantages—often 10-100x faster than
traditional tools for common operations. This performance boost is par-
ticularly noticeable in larger projects with complex dependency graphs.

L.2. Key Features and Benefits

L.2.1. Performance

Performance is uv’s most distinctive feature:

• Parallel Downloads: Downloads and installs packages in parallel
• Optimized Dependency Resolution: Efficiently resolves depen-

dencies with a modern algorithm

283



L. UV - High-Performance Python Package Management

• Cached Builds: Maintains a build artifact cache to avoid redun-
dant work

• Rust Implementation: Low memory usage and high computa-
tional efficiency

In practical terms, this means environments that might take minutes to
create with traditional tools can be ready in seconds with uv.

L.2.2. Compatibility

Despite its modern architecture, uv maintains compatibility with Python’s
ecosystem:

• Standard Wheel Support: Installs standard Python wheel distri-
butions

• PEP Compliance: Follows relevant Python Enhancement Propos-
als for packaging

• Requirements.txt Support: Works with traditional requirements
files

• pyproject.toml Support: Compatible with modern project con-
figurations

L.2.3. Unified Functionality

uv combines features from several traditional tools:

• Environment Management: Similar to venv but faster
• Package Installation: Like pip but with parallel processing
• Dependency Resolution: Similar to pip-tools but more efficient
• Lockfile Generation: Creates deterministic environments like pip-

compile

284



L.3. Getting Started with uv

L.3. Getting Started with uv

L.3.1. Installation

uv can be installed in several ways:

# Using pipx (recommended for CLI usage)
pipx install uv

# Using pip
pip install uv

# Using curl (Unix systems)
curl -LsSf https://astral.sh/uv/install.sh | sh

# Using PowerShell (Windows)
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"

L.3.2. Basic Commands

uv has an intuitive command structure that will feel familiar to pip users:

# Create a virtual environment
uv venv

# Install a package
uv pip install requests

# Install from requirements file
uv pip install -r requirements.txt

285



L. UV - High-Performance Python Package Management

# Install a package in development mode
uv pip install -e .

L.3.3. Working with Virtual Environments

uv integrates environment management with package installation:

# Create and activate a virtual environment
uv venv
source .venv/bin/activate # On Unix
# .venv\Scripts\activate # On Windows

# Or install directly into an environment
uv pip install --venv .venv numpy pandas

L.4. Dependency Management with uv

L.4.1. Compiling Requirements

uv offers an efficient workflow for managing dependencies using a two-file
approach similar to pip-tools:

# Create a simple requirements.in file
echo "requests>=2.28.0" > requirements.in

# Compile to a locked requirements.txt
uv pip compile requirements.in -o requirements.txt

# Install the locked dependencies
uv pip sync requirements.txt

286



L.4. Dependency Management with uv

The generated requirements.txt will contain exact versions of all depen-
dencies (including transitive ones), ensuring reproducible environments.

L.4.2. Development Dependencies

For more complex projects, you can separate production and development
dependencies:

# Create a dev-requirements.in file
echo "-c requirements.txt" > dev-requirements.in
echo "pytest" >> dev-requirements.in
echo "black" >> dev-requirements.in

# Compile development dependencies
uv pip compile dev-requirements.in -o dev-requirements.txt

# Install all dependencies
uv pip sync requirements.txt dev-requirements.txt

The -c requirements.txt constraint ensures compatible versions
between production and development dependencies.

L.4.3. Updating Dependencies

When you need to update packages:

# Update all packages to their latest allowed versions
uv pip compile --upgrade requirements.in

# Update a specific package
uv pip compile --upgrade-package requests requirements.in

287



L. UV - High-Performance Python Package Management

L.5. Advanced uv Features

L.5.1. Offline Mode

uv supports working in environments without internet access:

# Install using only cached packages
uv pip install --offline numpy

L.5.2. Direct URLs and Git Dependencies

uv can install packages from various sources:

# Install from GitHub
uv pip install git+https://github.com/user/repo.git@branch

# Install from local directory
uv pip install /path/to/local/package

L.5.3. Configuration Options

uv allows configuration through command-line options:

# Set global options
uv pip install --no-binary :all: numpy # Force source builds
uv pip install --only-binary numpy pandas # Force binary installations

288



L.6. Integration with Workflows

L.5.4. Performance Optimization

To maximize uv’s performance:

# Use concurrent installations
uv pip install --concurrent-installs numpy pandas matplotlib

# Reuse the build environment
uv pip install --no-build-isolation package-name

L.6. Integration with Workflows

L.6.1. CI/CD Integration

uv is particularly valuable in CI/CD pipelines where speed matters:

# GitHub Actions example
- name: Set up Python
uses: actions/setup-python@v4
with:

python-version: "3.10"

- name: Install uv
run: pip install uv

- name: Install dependencies
run: uv pip sync requirements.txt dev-requirements.txt

L.6.2. IDE Integration

While IDEs typically detect standard virtual environments, you can ex-
plicitly configure them:

289



L. UV - High-Performance Python Package Management

L.6.2.1. VS Code

1. Create an environment: uv venv
2. Select the interpreter at .venv/bin/python (Unix) or .venv\Scripts\python.exe

(Windows)

L.6.2.2. PyCharm

1. Create an environment: uv venv
2. In Settings → Project → Python Interpreter, add the interpreter

from the .venv directory

L.7. Comparing uv with Other Tools

L.7.1. uv vs. pip

Feature uv pip
Installation Speed Very fast

(parallel)
Slower
(sequential)

Dependency Resolution Fast, efficient Slower,
sometimes
problematic

Environment Management Built-in Requires separate
tool (venv)

Lock Files Native support Requires
pip-tools

Caching Global, efficient More limited
Compatibility High with

standard
packages

Universal

290



L.8. Best Practices with uv

L.7.2. uv vs. pip-tools

Feature uv pip-tools
Speed Very fast Moderate
Implementation Rust Python
Environment
Management

Integrated Separate (needs venv)

Command Structure uv pip
compile/sync

pip-compile/pip-sync

Hash Generation Supported Supported

L.7.3. uv vs. Poetry/PDM

Feature uv Poetry/PDM
Focus Performance Project management
Configuration Minimal (uses standard files) More extensive
Learning Curve Gentle (similar to pip) Steeper
Project Structure Flexible More opinionated
Publishing to PyPI Basic support Comprehensive support

L.8. Best Practices with uv

L.8.1. Dependency Management Workflow

A recommended workflow using uv for dependency management:

1. Define direct dependencies in a requirements.in file with min-
imal version constraints

291



L. UV - High-Performance Python Package Management

2. Compile locked requirements with uv pip compile requirements.in
-o requirements.txt

3. Install dependencies with uv pip sync requirements.txt
4. Update dependencies periodically with uv pip compile

--upgrade requirements.in

L.8.2. Optimal Project Structure

A simple project structure that works well with uv:

my_project/
��� .venv/ # Created by uv venv
��� src/ # Source code
� ��� my_package/
��� tests/ # Test files
��� requirements.in # Direct dependencies
��� requirements.txt # Locked dependencies (generated)
��� dev-requirements.in # Development dependencies
��� dev-requirements.txt # Locked dev dependencies (generated)
��� pyproject.toml # Project configuration

L.8.3. Version Control Considerations

When using version control with uv:

• Commit both .in and .txt files to ensure reproducible builds
• Add .venv/ to your .gitignore
• Consider committing hash-verified requirements for security

292



L.9. Troubleshooting uv

L.9. Troubleshooting uv

L.9.1. Common Issues and Solutions

L.9.1.1. Missing Binary Wheels

If you encounter issues with packages requiring compilation:

# Try forcing binary wheels
uv pip install --only-binary :all: package-name

# Or for a specific package
uv pip install --only-binary package-name package-name

L.9.1.2. Dependency Conflicts

For dependency resolution issues:

# Get detailed information about conflicts
uv pip install --verbose package-name

# Try installing with more permissive constraints
uv pip install --no-deps package-name
# Then fix specific dependencies

L.9.1.3. Environment Problems

If environments aren’t working properly:

293



L. UV - High-Performance Python Package Management

# Create a fresh environment
rm -rf .venv
uv venv

# Or use a specific Python version
uv venv --python 3.9

L.10. Conclusion

uv represents an exciting advancement in Python tooling, offering sig-
nificant performance improvements while maintaining compatibility with
existing workflows. Its speed benefits are particularly valuable for:

• CI/CD pipelines where build time matters
• Large projects with many dependencies
• Development environments with frequent updates
• Teams looking to improve developer experience

While newer than some traditional tools, uv’s compatibility with standard
Python packaging conventions makes it a relatively low-risk adoption with
potentially high rewards in terms of productivity and performance. As it
continues to mature, uv is positioned to become an increasingly important
part of the Python development ecosystem.

For most projects, uv can be a drop-in replacement for pip and pip-tools,
offering an immediate performance boost without requiring significant
workflow changes—a rare combination of revolutionary performance with
evolutionary adoption requirements.

294



M. Poetry - Modern Python
Packaging and Dependency
Management

M.1. Introduction to Poetry

Poetry is a modern Python package management tool designed to simplify
dependency management and packaging in Python projects. Developed
by Sébastien Eustace and released in 2018, Poetry aims to solve common
problems in the Python ecosystem by providing a single tool to handle
dependency installation, package building, and publishing.

Poetry’s core philosophy is to make Python packaging more determinis-
tic and user-friendly through declarative dependency specification, lock
files for reproducible environments, and simplified commands for common
workflows. By combining capabilities that traditionally required multiple
tools (pip, setuptools, twine, etc.), Poetry offers a more cohesive develop-
ment experience.

M.2. Key Features of Poetry

M.2.1. Dependency Management

Poetry’s dependency resolution is one of its strongest features:

295



M. Poetry - Modern Python Packaging and Dependency Management

• Deterministic builds: Poetry resolves dependencies considering
the entire dependency graph, preventing many common conflicts

• Lock file: The poetry.lock file ensures consistent installations
across different environments

• Easy version specification: Simple syntax for version constraints
• Dependency groups: Organize dependencies into development,

testing, and other logical groups

M.2.2. Project Setup and Configuration

Poetry uses a single configuration file for project metadata and dependen-
cies:

• pyproject.toml: All project configuration lives in one standard-
compliant file

• Project scaffolding: poetry new command creates a standardized
project structure

• Environment management: Automatic handling of virtual envi-
ronments

M.2.3. Build and Publish Workflow

Poetry streamlines the package distribution process:

• Unified build command: poetry build creates both source and
wheel distributions

• Simplified publishing: poetry publish handles uploading to
PyPI

• Version management: Tools to bump version numbers according
to semantic versioning

296



M.3. Getting Started with Poetry

M.3. Getting Started with Poetry

M.3.1. Installation

Poetry can be installed in several ways:

# Using the official installer (recommended)
curl -sSL https://install.python-poetry.org | python3 -

# Using pipx
pipx install poetry

# Using pip (not recommended for most cases)
pip install poetry

After installation, verify that Poetry is working:

poetry --version

M.3.2. Creating a New Project

To create a new project with Poetry:

# Create a new project
poetry new my-project

# Project structure created:
# my-project/
# ��� my_project/
# � ��� __init__.py
# ��� tests/
# � ��� __init__.py

297



M. Poetry - Modern Python Packaging and Dependency Management

# ��� pyproject.toml
# ��� README.md

Alternatively, initialize Poetry in an existing project:

# Navigate to existing project
cd existing-project

# Initialize Poetry
poetry init

This interactive command helps you create a pyproject.toml file with
your project’s metadata and dependencies.

M.3.3. Basic Configuration

The pyproject.toml file is the heart of a Poetry project. Here’s a sam-
ple:

[tool.poetry]
name = "my-project"
version = "0.1.0"
description = "A sample Python project"
authors = ["Your Name <your.email@example.com>"]
readme = "README.md"
packages = [{include = "my_project"}]

[tool.poetry.dependencies]
python = "^3.8"
requests = "^2.28.0"
pandas = "^2.0.0"

298



M.4. Essential Poetry Commands

[tool.poetry.group.dev.dependencies]
pytest = "^7.0.0"
black = "^23.0.0"
mypy = "^1.0.0"

[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

M.4. Essential Poetry Commands

M.4.1. Managing Dependencies

# Install all dependencies
poetry install

# Install only main dependencies (no dev dependencies)
poetry install --without dev

# Add a new dependency
poetry add requests

# Add a development dependency
poetry add pytest --group dev

# Update all dependencies
poetry update

# Update specific packages
poetry update requests pandas

299



M. Poetry - Modern Python Packaging and Dependency Management

# Show installed packages
poetry show

# Show dependency tree
poetry show --tree

M.4.2. Environment Management

# Create/use virtual environment
poetry env use python3.10

# List available environments
poetry env list

# Get information about the current environment
poetry env info

# Remove an environment
poetry env remove python3.9

M.4.3. Building and Publishing

# Build source and wheel distributions
poetry build

# Publish to PyPI
poetry publish

# Build and publish in one step

300



M.5. Advanced Poetry Features

poetry publish --build

# Publish to a custom repository
poetry publish -r my-repository

M.4.4. Running Scripts

# Run a Python script in the Poetry environment
poetry run python script.py

# Run a command defined in pyproject.toml
poetry run my-command

# Activate the shell in the Poetry environment
poetry shell

M.5. Advanced Poetry Features

M.5.1. Dependency Groups

Poetry allows organizing dependencies into logical groups:

[tool.poetry.dependencies]
python = "^3.8"
requests = "^2.28.0"

[tool.poetry.group.dev.dependencies]
pytest = "^7.0.0"
black = "^23.0.0"

301



M. Poetry - Modern Python Packaging and Dependency Management

[tool.poetry.group.docs.dependencies]
sphinx = "^5.0.0"
sphinx-rtd-theme = "^1.0.0"

Install specific groups:

# Install only production and docs dependencies
poetry install --without dev

# Install with specific groups
poetry install --only main,dev

M.5.2. Version Constraints

Poetry supports various version constraint syntaxes:

• ^1.2.3: Compatible with 1.2.3 <= version < 2.0.0
• ~1.2.3: Compatible with 1.2.3 <= version < 1.3.0
• >=1.2.3,<1.5.0: Version between 1.2.3 (inclusive) and 1.5.0 (exclu-

sive)
• 1.2.3: Exactly version 1.2.3
• *: Any version

M.5.3. Private Repositories

Configure private package repositories:

# Add a repository
poetry config repositories.my-repo https://my-repository.example.com/simple/

# Add credentials

302



M.6. Best Practices with Poetry

poetry config http-basic.my-repo username password

# Install from the repository
poetry add package-name --source my-repo

M.5.4. Script Commands

Define custom commands in your pyproject.toml:

[tool.poetry.scripts]
my-command = "my_package.cli:main"
start-server = "my_package.server:start"

These commands become available through poetry run or when the pack-
age is installed.

M.6. Best Practices with Poetry

M.6.1. Project Structure

A recommended project structure for Poetry projects:

my_project/
��� src/
� ��� my_package/ # Main package code
� ��� __init__.py
� ��� module.py
��� tests/ # Test files
� ��� __init__.py
� ��� test_module.py

303



M. Poetry - Modern Python Packaging and Dependency Management

��� docs/ # Documentation
��� pyproject.toml # Poetry configuration
��� poetry.lock # Lock file (auto-generated)
��� README.md # Project documentation

To use the src layout with Poetry:

[tool.poetry]
# ...
packages = [{include = "my_package", from = "src"}]

M.6.2. Dependency Management Strategies

1. Minimal Version Specification: Use ^ (caret) constraint to allow
compatible updates
[tool.poetry.dependencies]
requests = "^2.28.0" # Allows any 2.x.y version >= 2.28.0

2. Development vs. Production Dependencies: Use groups to
separate dependencies
[tool.poetry.dependencies]
# Production dependencies

[tool.poetry.group.dev.dependencies]
# Development-only dependencies

3. Update Strategy: Regularly update the lock file
# Update dependencies and lock file
poetry update

# Regenerate lock file based on pyproject.toml
poetry lock --no-update

304



M.6. Best Practices with Poetry

M.6.3. Version Control Practices

1. Always commit the lock file: The poetry.lock file ensures re-
producible builds

2. Consider a CI step to verify lock file consistency:
# In GitHub Actions
- name: Verify poetry.lock is up to date
run: poetry lock --check

M.6.4. Integration with Development Tools

M.6.4.1. Code Formatting and Linting

Configure tools like Black and Ruff in pyproject.toml:

[tool.black]
line-length = 88
target-version = ["py39"]

[tool.ruff]
select = ["E", "F", "I"]
line-length = 88

M.6.4.2. Type Checking

Configure mypy in pyproject.toml:

[tool.mypy]
python_version = "3.9"
warn_return_any = true
disallow_untyped_defs = true

305



M. Poetry - Modern Python Packaging and Dependency Management

M.7. Integration with Development Workflows

M.7.1. IDE Integration

Poetry integrates well with most Python IDEs:

M.7.1.1. VS Code

1. Install the Python extension
2. Configure VS Code to use Poetry’s environment:

• It should detect the Poetry environment automatically
• Or set python.poetryPath in settings

M.7.1.2. PyCharm

1. Go to Settings → Project → Python Interpreter
2. Add the Poetry-created interpreter (typically in ~/.cache/pypoetry/virtualenvs/)
3. Or use PyCharm’s Poetry plugin

M.7.2. CI/CD Integration

M.7.2.1. GitHub Actions Example

name: Python CI

on:
push:
branches: [ main ]

pull_request:
branches: [ main ]

306



M.8. Troubleshooting Common Issues

jobs:
test:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:

python-version: "3.10"

- name: Install Poetry
uses: snok/install-poetry@v1
with:

version: "1.5.1"

- name: Install dependencies
run: poetry install

- name: Run tests
run: poetry run pytest

M.8. Troubleshooting Common Issues

M.8.1. Dependency Resolution Errors

If Poetry can’t resolve dependencies:

# Show more detailed error information
poetry install -v

307



M. Poetry - Modern Python Packaging and Dependency Management

# Try updating Poetry itself
poetry self update

# Try with specific versions to identify the conflict
poetry add package-name==specific.version

M.8.2. Virtual Environment Problems

For environment-related issues:

# Get environment information
poetry env info

# Create a fresh environment
poetry env remove --all
poetry install

# Use a specific Python version
poetry env use /path/to/python

M.8.3. Package Publishing Issues

When facing publishing problems:

# Verify your PyPI credentials
poetry config pypi-token.pypi your-token

# Check build before publishing
poetry build
# Examine the resulting files in dist/

308



M.9. Comparison with Other Tools

# Publish with more information
poetry publish -v

M.9. Comparison with Other Tools

M.9.1. Poetry vs. pip + venv

• Poetry: Single tool for environment, dependencies, and packaging
• pip + venv: Separate tools for different aspects of the workflow
• Key difference: Poetry adds dependency resolution and lock file

M.9.2. Poetry vs. Pipenv

• Poetry: Stronger focus on packaging and publishing
• Pipenv: Primarily focused on application development
• Key difference: Poetry’s packaging capabilities make it more suit-

able for libraries

M.9.3. Poetry vs. PDM

• Poetry: More opinionated, integrated experience
• PDM: More standards-compliant, supports PEP 582
• Key difference: Poetry’s custom installer vs. PDM’s closer adher-

ence to PEP standards

M.9.4. Poetry vs. Hatch

• Poetry: Focus on dependency management and packaging

309



M. Poetry - Modern Python Packaging and Dependency Management

• Hatch: Focus on project management and multi-environment work-
flows

• Key difference: Poetry’s stronger dependency resolution
vs. Hatch’s project lifecycle features

M.10. When to Use Poetry

Poetry is particularly well-suited for:

1. Library Development: Its packaging and publishing tools shine
for creating distributable packages

2. Team Projects: The lock file ensures consistent environments
across team members

3. Projects with Complex Dependencies: The resolver helps man-
age intricate dependency requirements

4. Developers Wanting an All-in-One Solution: The unified in-
terface simplifies the development workflow

Poetry might not be ideal for:

1. Simple Scripts: May be overkill for very small projects
2. Projects with Unusual Build Requirements: Complex custom

build processes might need more specialized tools
3. Integration with Existing pip-Based Workflows: Requires

adapting established processes

M.11. Conclusion

Poetry represents a significant evolution in Python package management,
offering a more integrated and user-friendly approach to dependencies,
environments, and packaging. Its focus on deterministic builds through

310



M.11. Conclusion

the lock file mechanism and simplified workflow commands addresses many
pain points in traditional Python development.

While Poetry introduces its own conventions and may require adaptation
for teams used to traditional tools, the benefits in terms of reproducibil-
ity and developer experience make it worth considering for both new and
existing Python projects. As the tool continues to mature and the ecosys-
tem around it grows, Poetry is establishing itself as a standard part of the
modern Python development toolkit.

311





N. PDM

313




	Preface
	The Evolving Python Ecosystem: AI as a Development Partner
	Development Environments and Editor Choice
	How to Use This Guide
	Related Resources

	Setting the Foundation
	Python Project Structure Best Practices
	Why Use the src Layout?
	Key Components Explained
	Getting Started
	Applications vs. Packages: Knowing Your Project Type

	Version Control Fundamentals
	Setting Up Git
	Basic Git Workflow
	Effective Commit Messages
	Branching for Features and Fixes
	Integrating with GitHub or GitLab
	Git Best Practices for Beginners

	Virtual Environments and Basic Dependencies
	Understanding Virtual Environments
	Setting Up a Virtual Environment with venv
	Basic Dependency Management
	Practical Example: Setting Up a New Project

	Jumpstarting Your Projects with Templates
	Simple Scaffolding Script
	Cookiecutter Template (For More Comprehensive Setup)
	GitHub Repository Templates (For No-Installation Simplicity)


	Advancing Your Workflow
	Robust Dependency Management with pip-tools and uv
	The Problem with pip freeze
	Solution 1: pip-tools
	Solution 2: uv
	Choosing Between pip-tools and uv
	Best Practices for Either Approach

	Code Quality Tools with Ruff
	The Evolution of Python Code Quality Tools
	Why Ruff?
	Getting Started with Ruff
	Basic Configuration
	Using Ruff in Your Workflow
	Hands-on: Setting Up Ruff Step-by-Step
	Integrating Ruff with Pre-commit Hooks
	Real-world Configuration Example
	Integrating Ruff into Your Editor
	Gradually Adopting Ruff
	Enforcing Code Quality in CI
	Beyond Ruff: When to Consider Other Tools

	Automated Testing with pytest
	Why Testing Matters
	Getting Started with pytest
	Setting Up a Testing Project Structure
	Writing Your First Test
	Running Tests
	pytest Features That Make Testing Easier
	Test Coverage
	Configuring pytest for Your Project
	Testing Best Practices
	Common Testing Patterns
	Testing Strategy
	Continuous Testing

	Type Checking with mypy
	Understanding Type Hints
	Getting Started with mypy
	Configuring mypy
	Gradual Typing
	Essential Type Annotations
	Advanced Type Hints
	Common Challenges and Solutions
	Integration with Your Workflow
	The Broader Type Checking Landscape
	Benefits of Type Checking
	When to Use Type Hints

	Security Analysis with Bandit
	Understanding Security Static Analysis
	Getting Started with Bandit
	Security Issues Bandit Can Detect
	Configuring Bandit
	Integrating Bandit in Your Workflow
	Responding to Security Findings
	False Positives

	Finding Dead Code with Vulture
	The Problem of Dead Code
	Getting Started with Vulture
	What Vulture Detects
	Handling False Positives
	Configuration and Integration
	Best Practices for Dead Code Removal
	When to Run Vulture


	Documentation and Deployment
	Documentation Options: From pydoc to MkDocs
	Starting Simple with Docstrings
	Viewing Documentation with pydoc
	Simple Script for Basic Documentation Site
	Moving to MkDocs for Comprehensive Documentation
	Hosting Documentation with GitHub Pages
	Integrating API Documentation
	Documentation Best Practices
	Choosing the Right Documentation Approach

	CI/CD Workflows with GitHub Actions
	Understanding CI/CD Basics
	Setting Up GitHub Actions
	Basic Python CI Workflow
	Using Dependency Caching
	Adapting for Different Dependency Tools
	Building and Publishing Documentation
	Building and Publishing Python Packages
	Running Tests in Multiple Environments
	Branch Protection and Required Checks
	Scheduled Workflows
	Notifications and Feedback
	A Complete CI/CD Workflow Example
	CI/CD Best Practices

	Package Publishing and Distribution
	Preparing Your Package for Distribution
	Building Your Package
	Publishing to Test PyPI
	Publishing to PyPI
	Automating Package Publishing
	Versioning Best Practices
	Creating Releases
	Package Maintenance
	Advanced Distribution Topics
	Modern vs. Traditional Python Packaging


	Case Study: Building SimpleBot - A Python Development Workflow Example
	Project Overview
	1. Setting the Foundation
	Project Structure
	Setting Up Version Control
	Creating Essential Files
	Virtual Environment Setup

	2. Building the Core Functionality
	3. Package Configuration
	Create a file named pyproject.toml with the following contents:
	4. Writing Tests
	5. Applying Code Quality Tools
	6. Documentation
	7. Setup CI/CD with GitHub Actions
	8. Finalizing for Distribution
	9. Project Summary
	10. Next Steps

	Advanced Development Techniques
	Performance Optimization: Measure First, Optimize Second
	Establishing Performance Baselines
	Performance Optimization Strategy

	Containerization: Development Environment Consistency
	Development Containers vs. Production Containers
	Integrating Containers with Your Workflow
	When to Containerize

	Scaling Your Development Process
	Modular Architecture Patterns
	Configuration Management
	Database Integration Patterns

	API Development and Integration
	API Design Principles
	API Testing Strategy

	Cross-Platform Development Considerations
	Path and Environment Handling
	Testing Across Platforms

	When to Adopt Advanced Techniques
	Adopt Containerization When:
	Adopt Performance Optimization When:
	Adopt Advanced Architecture When:
	Don't Adopt Advanced Techniques When:

	Maintaining Development Velocity

	Project Management and Automation
	Task Automation with Poe the Poet
	Setting Up Poe the Poet
	Defining Project Tasks
	Advanced Task Configuration
	Running Tasks
	Integration with Development Workflow

	Project Setup and Structure
	Modern Python Project Layout
	Initializing New Projects
	Application vs. Package Considerations

	Team Collaboration Workflows
	Code Review Standards
	Release Management
	Managing Technical Debt

	Development Environment Standards
	Editor-Agnostic Configuration
	Development Environment Reproducibility


	Conclusion: Embracing Efficient Python Development
	The Power of a Complete Pipeline
	Your Path Forward: A Practical Adoption Strategy
	For Your Next New Project (Week 1)
	For Existing Projects (Month 1-2)
	For Team Environments (Month 2-3)
	Advanced Techniques (Month 3+)

	Beyond Tools: Engineering Culture
	When to Consider More Advanced Tools
	Common Implementation Challenges and Solutions
	``This Seems Like Too Much Overhead''
	``My Team Resists New Processes''
	``Tool Configuration is Confusing''
	``I Don't Know When to Add Advanced Practices''

	Staying Updated and Growing
	Following Core Development Principles
	Practical Learning Approach
	Continuous Improvement Mindset

	Final Thoughts
	The Universal Principles Behind the Tools
	Your Development Journey Continues
	Starting Your Next Project
	A Personal Note


	Acknowledgments
	Author
	AI Assistance
	Technical Production
	Special Thanks

	Appendices
	Glossary of Python Development Terms
	A
	C
	D
	E
	F
	G
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

	AI Tools for Python Development
	Overview of Current AI Tools and Their Strengths
	Code Assistants and Completion Tools
	Conversational AI Assistants
	AI-Enhanced Code Review Tools
	AI Documentation Tools

	Guidelines for Effective Prompting
	General Prompting Principles
	Python-Specific Prompting Strategies
	Using AI for Code Review


	Python Development Workflow Checklist
	Project Progression Path

	Introduction to Python IDEs and Editors
	Visual Studio Code
	Key Features for Python Development
	Integration with Development Tools
	Configuration Example
	AI-Assistant Integration

	Neovim
	Key Features for Python Development
	Integration with Development Tools
	Configuration Example
	AI-Assistant Integration

	Emacs
	Key Features for Python Development
	Integration with Development Tools
	Configuration Example
	AI-Assistant Integration

	AI-Enhanced Editors
	Cursor
	Whisper (Anthropic)

	Choosing the Right Environment
	Editor-Agnostic Best Practices

	Python Development Tools Reference
	Environment & Dependency Management
	Code Quality & Formatting
	Testing
	Type Checking
	Security & Code Analysis
	Documentation
	Package Building & Distribution
	Continuous Integration & Deployment
	Version Control
	Project Setup & Management
	Advanced Tools

	Comparision of Python Environment and Package Management Tools
	Comparison Table
	Installation Methods
	Typical Usage Patterns
	Use Case Recommendations
	For Beginners
	For Data Science/Scientific Computing
	For Library Development
	For Application Development
	For CI/CD Environments
	For Teams with Mixed Experience Levels

	Migration Paths
	When to Consider Multiple Tools
	Future Trends

	Python Development Pipeline Scaffold Python Script
	Cookiecutter Template
	What is Cookiecutter?
	Getting Started with the Template
	Prerequisites
	Installation
	Creating a New Project

	Template Features
	Project Structure
	Development Environment
	Code Quality Tools
	Testing
	Documentation
	CI/CD

	Customization Options
	Basic vs. Advanced Setup
	Documentation Options
	CI/CD Options

	Template Structure
	Post-Generation Steps
	Extending the Template
	Adding Custom Components
	Modifying Tool Configurations
	Creating Specialized Variants

	Best Practices for Using the Template
	Conclusion

	Hatch - Modern Python Project Management
	Introduction to Hatch
	Key Features of Hatch
	Project Management
	Environment Management
	Build and Packaging
	Extensibility

	Getting Started with Hatch
	Installation
	Creating a New Project
	Basic Configuration

	Essential Hatch Commands
	Environment Management
	Dependency Management
	Building and Publishing
	Version Management

	Advanced Hatch Features
	Environment Matrix
	Custom Scripts
	Environment Features
	Build Hooks

	Best Practices with Hatch
	Project Structure
	Environment Management Strategies
	Version Control Practices
	Integration with Development Tools

	Integration with Development Workflows
	IDE Integration
	CI/CD Integration

	Troubleshooting Common Issues
	Environment Creation Failures
	Build Issues
	Plugin Problems

	Comparison with Other Tools
	Hatch vs. Poetry
	Hatch vs. PDM
	Hatch vs. pip + venv

	When to Use Hatch
	Conclusion

	Using Conda for Environment Management
	Introduction to Conda
	When to Consider Conda
	Conda vs. Other Environment Tools
	Getting Started with Conda
	Installation
	Basic Conda Commands

	Environment Files with Conda
	Best Practices for Conda
	Channel Management
	Minimizing Environment Size
	Managing Conflicting Dependencies
	Combining Conda with pip
	Environment Isolation from System Python

	Integration with Development Workflows
	Using Conda with VS Code
	Using Conda with Jupyter
	CI/CD with Conda

	Common Pitfalls and Solutions
	Slow Environment Creation
	Conflicting Channels
	Large Environment Sizes

	Mamba: A Faster Alternative
	Conclusion

	Getting Started with venv
	Introduction to venv
	Why Use venv?
	Getting Started with venv
	Creating a Virtual Environment
	Activating the Environment
	Deactivating the Environment

	Advanced venv Options
	Creating Environments with Specific Python Versions
	Creating Environments Without pip
	Creating System Site-packages Access
	Upgrading pip in a New Environment

	Managing Dependencies with venv
	Installing Packages
	Tracking Dependencies
	Installing from Requirements

	Best Practices with venv
	Directory Naming Conventions
	Version Control Integration
	Environment Management Across Projects
	IDE Integration

	Comparing venv with Other Tools
	venv vs. virtualenv
	venv vs. conda
	venv vs. Poetry/PDM

	Troubleshooting Common Issues
	Activation Script Not Found
	Packages Not Found After Installation
	Permission Issues

	Script Examples for venv Workflows
	Project Setup Script
	Environment Recreation Script

	Conclusion

	UV - High-Performance Python Package Management
	Introduction to uv
	Key Features and Benefits
	Performance
	Compatibility
	Unified Functionality

	Getting Started with uv
	Installation
	Basic Commands
	Working with Virtual Environments

	Dependency Management with uv
	Compiling Requirements
	Development Dependencies
	Updating Dependencies

	Advanced uv Features
	Offline Mode
	Direct URLs and Git Dependencies
	Configuration Options
	Performance Optimization

	Integration with Workflows
	CI/CD Integration
	IDE Integration

	Comparing uv with Other Tools
	uv vs. pip
	uv vs. pip-tools
	uv vs. Poetry/PDM

	Best Practices with uv
	Dependency Management Workflow
	Optimal Project Structure
	Version Control Considerations

	Troubleshooting uv
	Common Issues and Solutions

	Conclusion

	Poetry - Modern Python Packaging and Dependency Management
	Introduction to Poetry
	Key Features of Poetry
	Dependency Management
	Project Setup and Configuration
	Build and Publish Workflow

	Getting Started with Poetry
	Installation
	Creating a New Project
	Basic Configuration

	Essential Poetry Commands
	Managing Dependencies
	Environment Management
	Building and Publishing
	Running Scripts

	Advanced Poetry Features
	Dependency Groups
	Version Constraints
	Private Repositories
	Script Commands

	Best Practices with Poetry
	Project Structure
	Dependency Management Strategies
	Version Control Practices
	Integration with Development Tools

	Integration with Development Workflows
	IDE Integration
	CI/CD Integration

	Troubleshooting Common Issues
	Dependency Resolution Errors
	Virtual Environment Problems
	Package Publishing Issues

	Comparison with Other Tools
	Poetry vs. pip + venv
	Poetry vs. Pipenv
	Poetry vs. PDM
	Poetry vs. Hatch

	When to Use Poetry
	Conclusion

	PDM


