
Conversation, Not Delegation:
Mastering Human-AI Development

Michael Borck

2026-01-23

Table of contents

Preface 1
Who This Book Is For . 2
How This Book Is Organized . 2
Related Resources . 3

I. The Philosophy 5

1. Conversation, Not Delegation 7
1.1. The Core Distinction . 7
1.2. What is a “Prompt”? . 8
1.3. What is “Intentional Prompting”? 8
1.4. The Philosophy in Action 10
1.5. Python . 10
1.6. Business . 11
1.7. Beyond Programming . 12
1.8. What is Ahead . 12

II. Foundations 13

2. Introduction 15
2.1. Applying the Philosophy to Software Development 15
2.2. What is Intentional Prompting? 15

2.2.1. Intentional Prompting vs. Prompt Engineering . . . 16
2.3. Why Intentional Prompting Matters 17

2.3.1. Beyond Automation: The Case for Human Oversight 18

iii

Table of contents

2.4. The Six-Step Methodology 19
2.5. Who Should Read This Book 20
2.6. Related Materials . 20

3. The AI Revolution in Programming 23
3.1. Evolution of Programming Tools 23
3.2. Types of AI Coding Assistants 23

3.2.1. Code Completion Tools 23
3.2.2. Conversational AI Assistants 24
3.2.3. IDE Integrations . 24

3.3. Capabilities and Limitations 24
3.3.1. What AI Can Do Well 24
3.3.2. Current Limitations 25

3.4. Common Misconceptions . 25
3.4.1. “AI Will Replace Programmers” 25
3.4.2. “AI Always Produces Correct Code” 26
3.4.3. “Using AI Is Cheating” 26
3.4.4. “AI Works Best When Asked for Complete Solutions” 26

3.5. The Human-AI Partnership Model 26
3.5.1. The Human Provides: 26
3.5.2. The AI Provides: . 27

3.6. Emerging Approaches to AI-Assisted Development 27
3.6.1. Vibe Coding: Embracing AI-Led Development . . . 27
3.6.2. Intentional Prompting: Human-Directed AI Assistance 28
3.6.3. Collaborative Integration: Finding the Middle Ground 29

3.7. Looking Ahead . 29

4. Principles of Intentional Prompting 31
4.1. The Spectrum of AI Integration Approaches 31

4.1.1. Permissive Approach: “Just Take the Answer” . . . 33
4.1.2. Dismissive Approach: “Reject AI Outright” 33
4.1.3. Collaborative Approach: “Human-Directed AI As-

sistance” . 34

iv

Table of contents

4.1.4. Comparing Intentional Prompting vs. Vibe Program-
ming . 34

4.1.5. Example: Different Approaches to the Same Challenge 36
4.2. Maintaining Human Agency 39

4.2.1. Directive vs. Delegative Approaches 39
4.2.2. Techniques for Maintaining Agency 40

4.3. Understanding vs. Copying 40
4.3.1. The “Black Box” Problem 40
4.3.2. Signs of Understanding 40
4.3.3. Strategies for Building Understanding 41

4.4. Process Over Output . 41
4.4.1. Why Process Matters 41
4.4.2. The Six-Step Process 41
4.4.3. Integrating AI Into Your Process 42

4.5. The Learning Mindset . 42
4.5.1. Characteristics of a Learning Mindset 42
4.5.2. AI as a Learning Partner 43
4.5.3. Intentional Learning Techniques 43

4.6. Ethical Considerations . 43
4.6.1. Attribution and Transparency 44
4.6.2. Security and Quality Responsibility 44
4.6.3. Bias and Fairness . 44
4.6.4. Professional Development Balance 44

4.7. Addressing Common Concerns and Resistance to LLMs . . 45
4.7.1. The Ambiguity of Natural Language 45
4.7.2. The Non-Deterministic Nature of LLMs 46
4.7.3. Procedural Knowledge Transfer 47
4.7.4. Finding the Right Balance 47

4.8. Putting Principles Into Practice 48

v

Table of contents

III. Methodology 49

5. The Six-Step Programming Methodology 51
5.1. Overview of the Methodology 51

5.1.1. Design (Thinking) Phase - Steps 1-4 53
5.1.2. Coding (Doing) Phase - Steps 5-6 53
5.1.3. The Hidden Structure of the Methodology 53
5.1.4. Adapting to Your Preferred Methodology 54

5.2. How AI Changes the Process 55
5.2.1. Acceleration and Exploration 56
5.2.2. The Temptation to Skip Steps 56
5.2.3. New Capabilities and Responsibilities 56

5.3. Benefits of a Structured Approach 57
5.3.1. Better Code Quality 57
5.3.2. Enhanced Learning 57
5.3.3. Appropriate AI Integration 57
5.3.4. Reduced Technical Debt 58

5.4. Case Study: Solving a Problem With and Without AI . . . 58
5.4.1. Approach 1: Delegating to AI (Without Methodology) 58
5.4.2. Approach 2: The Six-Step Methodology with AI

Assistance . 59

6. Restate and Identify (Steps 1-2) 69
6.1. Techniques for Problem Restatement 69

6.1.1. Why Restatement Matters 69
6.1.2. Effective Restatement Approaches 70
6.1.3. Using AI to Enhance Restatement 71

6.2. Clearly Defining Inputs and Outputs 72
6.2.1. Why Input/Output Specification Matters 73
6.2.2. Elements of Complete I/O Specifications 73
6.2.3. Documenting I/O With Examples 74
6.2.4. Using AI to Explore Edge Cases 74

6.3. Prompting Techniques for Requirement Clarification 76
6.3.1. The Five Whys Technique 76

vi

Table of contents

6.3.2. Stakeholder Perspective Prompting 76
6.3.3. Requirement Expansion 77
6.3.4. Comparative Analysis 77

6.4. Practical Exercise: Restate and Identify in Action 77
6.4.1. Step 1: Restate the Problem 78
6.4.2. Step 2: Identify Input and Output 79

6.5. Moving Forward . 80

7. Work by Hand (Step 3) 81
7.1. The Importance of Manual Examples 81

7.1.1. Why Work By Hand? 81
7.1.2. Mental Models vs. Pattern Matching 82

7.2. Tracing Algorithms Step by Step 82
7.2.1. The Tracing Process 82
7.2.2. Visualization Techniques 83

7.3. Testing Assumptions . 84
7.3.1. Assumption Categories 84
7.3.2. The “What If?” Technique 85

7.4. Sharing Your Manual Work with AI 85
7.4.1. Verification of Manual Solutions 86
7.4.2. Exploring Alternative Approaches 86
7.4.3. Identifying Edge Cases 86

7.5. Practical Exercise: Working By Hand 87
7.5.1. Chosen Example: “babad” 87
7.5.2. Edge Case: Empty String 88
7.5.3. Edge Case: Single Character 88
7.5.4. Edge Case: All Same Characters 88
7.5.5. Edge Case: No Palindromes Longer Than 1 89
7.5.6. Validating Our Approach with AI 89

7.6. Insights from Working By Hand 90
7.7. Key Takeaways . 90
7.8. Moving Forward . 90

vii

Table of contents

8. Pseudocode (Step 4) 93
8.1. Writing Effective Pseudocode 93

8.1.1. What Makes Good Pseudocode? 93
8.1.2. Common Pseudocode Conventions 94

8.2. Pseudocode and LLMs: A Natural Partnership 95
8.2.1. Why Pseudocode Works Well with LLMs 95
8.2.2. Pseudocode as Disambiguation Tool 96
8.2.3. SudoLang: Pseudocode Optimized for LLMs 96
8.2.4. LLMs as Pseudocode Interpreters 97
8.2.5. Pseudocode vs. Comments 98

8.3. AI-Assisted Algorithm Design 99
8.3.1. Generating Initial Pseudocode 99
8.3.2. Refining Pseudocode 100
8.3.3. Comparing Alternative Approaches 101

8.4. From Pseudocode to Implementation Plan 104
8.4.1. Adding Implementation Details 104
8.4.2. Creating Function Signatures 105
8.4.3. Planning Test Coverage 106

8.5. Comparing Alternative Approaches 106
8.5.1. Evaluation Criteria 106
8.5.2. Structured Comparison 107
8.5.3. Making an Informed Decision 108

8.6. Key Takeaways . 108
8.7. Moving Forward . 109

9. Convert to Code (Step 5) 111
9.1. Strategies for Code Implementation 111

9.1.1. From Pseudocode to Code: A Systematic Approach 111
9.1.2. Incremental Implementation 112
9.1.3. Language-Specific Considerations 113

9.2. Working with AI Code Suggestions 115
9.2.1. Prompting for Implementation 115
9.2.2. Evaluating AI-Generated Code 117
9.2.3. Handling Unfamiliar Syntax or Libraries 119

viii

Table of contents

9.3. Maintaining Code Quality 120
9.3.1. Idiomatic Code . 120
9.3.2. Error Handling . 121
9.3.3. Performance Optimization 121
9.3.4. Documentation and Comments 121

9.4. Practical Exercise: Implementing Our Solution 122
9.4.1. Converting the Pseudocode 123
9.4.2. Final Implementation 124
9.4.3. Testing the Implementation 126

9.5. Key Takeaways . 127
9.6. Moving Forward . 127

10.Test with Data (Step 6) 129
10.1. Comprehensive Testing Strategies 129

10.1.1. The Importance of Thorough Testing 129
10.1.2. Types of Test Cases 130

10.2. Edge Case Identification . 131
10.2.1. Common Edge Case Categories 132
10.2.2. Using AI to Identify Edge Cases 133

10.3. AI-Assisted Test Generation 134
10.3.1. Generating Test Cases 134
10.3.2. Generating Test Code 135

10.4. Learning from Test Failures 137
10.4.1. Debugging with AI Assistance 137
10.4.2. Test Execution and Results 142
10.4.3. Fixing Issues Based on Test Results 143
10.4.4. Rerunning Tests . 144

10.5. Key Takeaways . 145
10.6. Moving Forward . 145

ix

Table of contents

IV. Patterns & Practices 147

11.Intentional Prompting Patterns 149
11.1. The Art of Guiding AI . 149
11.2. Prompt Engineering: A Foundational Discipline 150

11.2.1. From Prompt Engineering to Intentional Prompting 150
11.2.2. Core Prompt Engineering Techniques 152

11.3. Types of Intentional Prompts 154
11.3.1. Foundation Prompts 154
11.3.2. Clarification Prompts 154
11.3.3. Scaffolding Prompts 155
11.3.4. Challenge Prompts 155
11.3.5. Refinement Prompts 156
11.3.6. Error Induction Prompts 156

11.4. Effective Prompting Patterns 157
11.4.1. The “What If?” Pattern 157
11.4.2. The Incremental Building Pattern 157
11.4.3. The Deliberate Error Pattern 158
11.4.4. The Comparative Analysis Pattern 158

11.5. Advanced Prompt Engineering Strategies 158
11.5.1. Context-Enhanced Prompting 158
11.5.2. Constraint-Based Prompting 159
11.5.3. Template-Guided Prompting 159

11.6. Integrating Prompt Engineering with Intentional Prompting 160
11.6.1. The Symbiotic Relationship 160
11.6.2. Reinforcing the Six-Step Methodology 161
11.6.3. Beyond the Six-Step Framework: Universal Application162
11.6.4. AI as a Thoughtful Assistant 163

11.7. Measuring Your Progress 164
11.8. Case Study: Improving a Weather Data Function 164

11.8.1. Initial Prompt . 164
11.8.2. Initial AI-Generated Code 165
11.8.3. Analysis of the Initial Code 165
11.8.4. Follow-up Prompt with Specific Improvements . . . 165

x

Table of contents

11.8.5. Improved AI-Generated Code 166
11.8.6. Why This Prompting Strategy Was Effective 168

11.9. Key Takeaways . 169

12.Debugging with AI 171
12.1. Common Debugging Scenarios 171

12.1.1. Syntax Errors . 171
12.1.2. The Hypothesis Testing Approach 177
12.1.3. The Comparative Analysis Approach 178

12.2. Understanding Error Messages with AI 178
12.2.1. Anatomy of Error Messages 179
12.2.2. Common Error Patterns 179

12.3. Debugging Strategies with AI 180
12.3.1. Rubber Duck Debugging 180

12.4. Avoiding Debugging Pitfalls 184
12.4.1. The XY Problem . 184
12.4.2. The Correlation � Causation Trap 185
12.4.3. The Bandage Solution 186

13.Refactoring Strategies 193
13.1. When and Why to Refactor 193

13.1.1. Recognizing Refactoring Opportunities 193
13.1.2. Case Study 2: Reducing Duplication 204

13.2. Key Takeaways . 207
13.3. Moving Forward . 208

14.Case Studies 209
14.1. Case Study 1: Building a Data Analysis Pipeline 210

14.1.1. The Problem . 210
14.1.2. The Intentional Prompting Approach 211
14.1.3. Before and After Example: Improving a Key Function239
14.1.4. Lessons Learned . 242

14.2. Case Study 3: Debugging a Complex Bug 242
14.2.1. The Problem . 243

xi

Table of contents

14.2.2. The Intentional Prompting Approach 243
14.3. Key Takeaways . 244
14.4. Moving Forward . 245

V. Advanced Topics 247

15.Scaling to Complex Projects 249
15.1. Beyond Single-File Programs 249

15.1.1. The Challenges of Scale 249
15.1.2. Intentional Architecture Design 250
15.1.3. Component-Level Intentional Prompting 252

15.2. Managing AI in Larger Codebases 252
15.2.1. Context Limitations 252
15.2.2. Maintaining Consistency 253
15.2.3. Modular Prompting Strategies 254

15.3. Intentional System Design with Prompting 255
15.3.1. Designing for Evolution 255
15.3.2. Cross-Cutting Concerns 258

15.4. Documentation and Knowledge Transfer 259
15.4.1. Intentional System Documentation 259
15.4.2. AI-Enhanced Code Documentation 261

16.Teaching and Learning 271
16.1. Pedagogical Applications of Intentional Prompting 271

16.1.1. Rethinking Programming Education 271
16.1.2. The Educator’s Role in the AI Era 272
16.1.3. Integrating AI into Curriculum Design 272

16.2. Designing Assignments in the AI Era 273
16.2.1. Beyond “AI-Proof” Assignments 273
16.2.2. Prompting-Focused Assignments 273
16.2.3. Step-by-Step Guided Exercise 274
16.2.4. Evaluation and Improvement Assignments 275
16.2.5. Comparative Analysis Assignments 276

xii

Table of contents

16.2.6. Process Documentation Assignments 277
16.3. Assessing Understanding vs. Output 277

16.3.1. Moving Beyond Code Assessment 277
16.3.2. Process-Based Assessment 277
16.3.3. Concept Demonstration 278
16.3.4. Code Modification Challenges 278
16.3.5. Prompt Engineering Assessment 278

16.4. Building a Learning Community 279
16.4.1. Collaborative Learning in the AI Era 279
16.4.2. Peer Learning Strategies 279
16.4.3. Creating a Supportive Environment 279

16.5. Case Studies in Educational Settings 280
16.5.1. Case Study 1: Introductory Programming Course . . 280
16.5.2. Case Study 2: Advanced Software Engineering Course281

16.6. Practical Guide for Educators 282
16.6.1. Introducing Intentional Prompting in Your Curriculum282
16.6.2. Sample Lesson Plan: Introduction to Intentional

Prompting . 282
16.7. Practical Guide for Students 283

16.7.1. Maximizing Learning with AI Assistance 283
16.7.2. Self-Assessment Questions 284

16.8. Key Takeaways . 285
16.9. Moving Forward . 285

17.Future Directions 287
17.1. Emerging AI Capabilities 287

17.1.1. Beyond Text-Based Interfaces 287
17.1.2. Increasing Autonomy and Agentic Programming . . 288

17.2. Evolving Programming Paradigms 290
17.2.1. From Code Writing to Code Curation 290
17.2.2. New Programming Languages and Tools 291

17.3. Preparing for Future Changes 292
17.3.1. Skill Evolution for Developers 292
17.3.2. Organizational Adaptation 293

xiii

Table of contents

17.4. Maintaining the Human Element 294
17.4.1. Ethical Considerations 294
17.4.2. Human Comparative Advantages 295

17.5. Vision for Intentional Prompting’s Evolution 296
17.5.1. Short-Term Evolution (1-3 Years) 296
17.5.2. Medium-Term Evolution (3-7 Years) 297
17.5.3. Long-Term Vision (7+ Years) 297

17.6. A Personal Development Roadmap 298
17.6.1. Building Your Intentional Prompting Skills 298
17.6.2. Continuous Adaptation 299

17.7. Key Takeaways . 299
17.8. Intentional Prompting Beyond Programming 300

17.8.1. Universal Principles of AI Collaboration 300
17.8.2. The Five Principles in Any Domain 301
17.8.3. The Future of Human-AI Partnership 302

17.9. Conclusion . 302

Acknowledgments 305
Author . 305
AI Assistance . 305
Technical Production . 306
Special Thanks . 306

Appendices 307

A. Prompt Templates 307
A.1. Problem Analysis Templates 307

A.1.1. Understanding Requirements 307
A.1.2. Exploring Problem Complexity 307

A.2. Learning-Oriented Templates 308
A.2.1. Concept Explanation 308
A.2.2. Code Comprehension 308

xiv

Table of contents

A.3. Development Templates . 308
A.3.1. Incremental Development 308
A.3.2. Refactoring . 309

A.4. Debugging Templates . 309
A.4.1. Error Diagnosis . 309
A.4.2. Performance Issue 310

A.5. Architecture Templates . 310
A.5.1. Design Pattern Selection 310
A.5.2. Component Design 310

A.6. Testing Templates . 311
A.6.1. Test Case Generation 311
A.6.2. Testing Strategy . 311

A.7. Using These Templates Effectively 312

B. Common Pitfalls and Solutions 313
B.1. Over-Reliance on AI . 313

B.1.1. Symptoms . 313
B.1.2. Root Causes . 313
B.1.3. Solutions . 314

B.2. Unclear Prompt Formulation 314
B.2.1. Symptoms . 314
B.2.2. Root Causes . 315
B.2.3. Solutions . 315

B.3. Accepting Incorrect Solutions 316
B.3.1. Symptoms . 316
B.3.2. Root Causes . 316
B.3.3. Solutions . 317

B.4. Losing Track of the Big Picture 317
B.4.1. Symptoms . 317
B.4.2. Root Causes . 318
B.4.3. Solutions . 318

B.5. Ethical and Legal Concerns 319
B.5.1. Symptoms . 319
B.5.2. Root Causes . 319

xv

Table of contents

B.5.3. Solutions . 319
B.6. Prompt Pattern Case Studies 320

B.6.1. Case Study 1: Debugging a Complex Algorithm . . 320
B.6.2. Case Study 2: Implementing a New Feature 321

C. AI Tool Comparison 325
C.1. Approaches to AI-Assisted Programming 325

C.1.1. Comparative Framework for AI Programming Ap-
proaches . 325

C.2. Overview of AI Coding Assistant Types 329
C.2.1. Integrated Development Environment (IDE) Exten-

sions . 329
C.2.2. Conversational Assistants 330
C.2.3. AI-Enhanced IDEs 330
C.2.4. Code Analyzers and Explainers 330

C.3. Feature Comparison Matrix 330
C.4. Detailed Tool Profiles . 332

C.4.1. GitHub Copilot . 332
C.4.2. Claude . 333
C.4.3. Cursor . 334

C.5. Comparative Strengths for Specific Tasks 334
C.5.1. Learning New Concepts 334
C.5.2. Rapid Prototyping 335
C.5.3. Code Documentation 335
C.5.4. Debugging and Problem-Solving 335
C.5.5. Refactoring Existing Code 335
C.5.6. Security Auditing . 335

C.6. Choosing the Right Tool Combination 336
C.6.1. IDE Extension + Conversational Assistant 336
C.6.2. AI-Enhanced IDE + Specialized Tools 336
C.6.3. Multiple Conversational Assistants 336

C.7. Cost Considerations . 336
C.7.1. Direct Costs . 336
C.7.2. Indirect Costs . 337

xvi

Table of contents

C.7.3. Return on Investment Factors 337
C.8. Future Trends . 337
C.9. Practical Selection Framework 338
C.10.Key Takeaways . 339

D. Glossary 341
D.1. AI-Related Terms . 341
D.2. Intentional Prompting Concepts 342
D.3. Programming Concepts . 343
D.4. Teaching and Learning Terms 343

xvii

Preface

Welcome to “Conversation, Not Delegation: Mastering Human-AI Devel-
opment.” This book explores a new paradigm for software development in
the age of AI assistants.

Programming with AI isn’t just about getting code written faster—it’s
about thinking differently about the development process itself. By mas-
tering intentional prompting techniques, you’ll be able to:

• Direct AI tools with precision and purpose
• Maintain control over code quality and architecture
• Deepen your understanding of programming concepts
• Solve complex problems more effectively

Let’s begin this journey together, exploring how human intellect and
artificial intelligence can combine to create a programming partnership
greater than the sum of its parts. ## Why This Book?

The rapid integration of AI into software development workflows has funda-
mentally changed how we write code. Yet most programming education still
focuses either on traditional coding techniques or on prompt engineering
for AI tools, with little guidance on how to effectively combine human
expertise with AI capabilities.

This book aims to bridge that gap by presenting a structured methodology
for “intentional prompting” - an approach that leverages AI tools while
ensuring the human developer remains the architect and decision-maker in
the development process.

1

Preface

Who This Book Is For

This book is designed for:

• Software developers looking to integrate AI tools effectively into their
workflow

• Educators teaching programming in an AI-assisted world
• Students learning to code alongside AI assistants
• Tech leaders developing best practices for AI-augmented development

teams

You don’t need to be an expert programmer to benefit from this book, but
basic familiarity with programming concepts will help you get the most
out of the examples and exercises.

How This Book Is Organized

The book is divided into four parts:

1. Foundations: Core concepts of intentional prompting and the
human-AI partnership

2. Methodology: The six-step programming methodology adapted for
AI collaboration

3. Patterns & Practices: Effective prompting patterns and practical
coding examples

4. Advanced Topics: Scaling to complex projects and future directions

Each chapter includes practical examples, exercises, and reflections to help
you apply these concepts in your own work.

2

Related Resources

Related Resources

This guide is part of a 4-book series designed to help you master modern
software development in the AI era:

Think Python, Direct AI: Computational Thinking for Beginners
- An innovative programming textbook that embraces AI as a learning
partner. Master Python by learning how to think computationally and
direct AI to help you build solutions. Perfect for absolute beginners in the
age of AI.

Code Python, Consult AI: Python Fundamentals for the AI Era -
Learn fundamental Python with AI integration - ideal for those who want
a focused introduction to Python fundamentals

Conversation, Not Delegation: Mastering Human-AI Develop-
ment (this book) - A methodology for effective AI collaboration (human
oversight + methodology + LLM = success)

Ship It: Python in Production - Build professional-grade Python
applications with modern tools (uv, ruff, mypy, pytest - simple but not
simplistic)

Book Progression: Start with “Think Python, Direct AI” if you’re a
complete beginner, or jump into “Code Python, Consult AI” if you want
a more focused approach to Python fundamentals. Both books prepare
you for the production-focused content in “Ship It: Python in Produc-
tion,” while “Conversation, Not Delegation” provides the AI collaboration
methodology that enhances all your development work.

3

Part I.

The Philosophy

5

1. Conversation, Not Delegation

1.1. The Core Distinction

When you interact with AI, you make a choice—often unconsciously—about
the nature of that interaction.

Delegation is handing off a task: “Write me a marketing plan.” “Create
a Python function that does X.” You ask, AI delivers, you accept. It’s
transactional. The AI does the thinking; you consume the output.

Conversation is collaborative thinking: You engage the AI in dialogue.
You ask questions, challenge assumptions, build understanding together.
The AI contributes, but you remain the architect of the outcome.

This distinction matters because:

• Delegation makes you dependent. You get output but not
understanding. When something goes wrong, you can’t fix it. When
requirements change, you start from scratch.

• Conversation makes you capable. You build understanding
alongside output. You can explain, modify, and improve. You grow
with each interaction.

The philosophy of this book is simple: Treat AI as a thinking partner,
not a task executor.

7

1. Conversation, Not Delegation

1.2. What is a “Prompt”?

Before we go further, let’s demystify some terminology.

A prompt is simply a request or instruction you give
to AI.

That’s it. When you type “Explain how photosynthesis works” into Chat-
GPT, that’s a prompt. When you ask Claude to “Review this code for
bugs,” that’s a prompt. When you tell Copilot to “Write a function that
calculates shipping costs,” that’s a prompt.

Prompts can be simple or complex, vague or precise, single questions
or multi-paragraph specifications. The quality of AI’s response depends
heavily on how you craft your prompt—but at its core, a prompt is just a
request.

1.3. What is “Intentional Prompting”?

Intentional prompting is the practice of crafting each
AI interaction deliberately—to build understanding,
not just get output.

The word “intentional” is key. It means:

• Purposeful: Each prompt has a clear goal beyond “give me an
answer”

• Thoughtful: You consider what you’re asking and why
• Sequential: Each prompt builds on previous exchanges
• Learning-oriented: You seek understanding, not just solutions

A single prompt is a request. A series of intentional prompts becomes a
conversation.

8

1.3. What is “Intentional Prompting”?

Consider the difference:

Unintentional prompting:

"Write a function to validate email addresses"
[Accept output, move on]

Intentional prompting:

"I need to validate email addresses. Before we write code,
what makes an email address valid? What edge cases should we consider?"

[AI explains the rules and edge cases]

"Good. Now, what are the trade-offs between using a regular expression
versus parsing the parts individually?"

[AI compares approaches]

"Let's go with regex for simplicity. Can you show me the pattern
and explain each part?"

[AI provides explained solution]

"What inputs would break this? Let's test some edge cases."

[Collaborative refinement]

The second approach takes longer but produces:

• A solution you understand and can modify
• Knowledge that transfers to similar problems
• Confidence in the code’s limitations
• Skills that grow with each interaction

9

1. Conversation, Not Delegation

1.4. The Philosophy in Action

Let’s see how delegation and conversation differ in practice.

1.5. Python

Delegation approach:

Human: Write a Python function that calculates total price with tax and discounts.

AI: [Generates function - works for simple cases but what about negative
prices, multiple discounts, or tax-exempt items?]

Conversation approach:

Human: I need to calculate total price with tax and discounts. Before we
write code, what business rules should I consider?

AI: [Explains order of operations, compound discounts, rounding, edge cases]
Human: Those are good points. Lets handle discounts before tax.

What is a clean way to structure this?

AI: [Proposes design with clear separation of concerns]

Human: Now lets implement it. Can you explain each part as we go?

[Collaborative implementation with understanding]

10

1.6. Business

1.6. Business

Delegation approach:

Human: Create a marketing launch plan for our new product.

AI: [Generates complete plan]

Human: Looks good... I think? [Accepts without deep understanding]

Conversation approach:

Human: I need to create a marketing launch plan for our new productivity
app. Before we draft anything, help me think through the key
decisions. Who are our potential customer segments?

AI: [Discusses: enterprise vs SMB vs consumer, early adopters vs mainstream,
vertical-specific vs horizontal, budget considerations]

Human: Good analysis. Lets focus on SMB. What channels typically work
best for reaching SMB buyers in the productivity space?

AI: [Explains channel options with trade-offs]

Human: Content marketing and partnerships make sense for our budget.
What should our 90-day launch timeline look like?

[Collaborative planning with clear reasoning]

11

1. Conversation, Not Delegation

1.7. Beyond Programming

INFO Universal Principles

While this book applies intentional prompting to software develop-
ment, the philosophy of Conversation, Not Delegation works in any
domain: business planning, creative writing, research, education, and
beyond. The principles transfer - only the examples change.

1.8. What is Ahead

This book will teach you to have productive conversations with AI:

• Part 1: Foundations establishes the core concepts and principles
• Part 2: Methodology provides a structured six-step approach
• Part 3: Patterns and Practices offers reusable conversation

patterns
• Part 4: Advanced Topics addresses complex scenarios and future

directions

Throughout, you will see examples in both programming and business
contexts, reinforcing that these principles apply wherever you work with
AI.

The goal is not to make you dependent on AI, but to make you more
capable with AI as your partner.

Lets begin.

12

Part II.

Foundations

13

2. Introduction

2.1. Applying the Philosophy to Software
Development

In the previous chapter, we established the core philosophy: Conversation,
Not Delegation. We defined intentional prompting as the practice of
crafting each AI interaction deliberately—to build understanding, not just
get output.

Now we turn to software development specifically.

The landscape of programming is undergoing a profound transformation.
With AI assistants like GitHub Copilot, Claude, and ChatGPT, develop-
ers have powerful tools that can generate code, explain concepts, debug
problems, and assist with software design.

These tools have ignited debates: Will AI replace programmers? Should
we resist AI-generated code? Is programming fundamentally changing?

This book proposes a clear answer: Intentional Prompting—applying the
“Conversation, Not Delegation” philosophy to position AI as a collaborative
partner in development rather than either a threat or a magical solution.

2.2. What is Intentional Prompting?

Intentional prompting is a deliberate approach to programming that lever-
ages AI tools while maintaining human control over the development

15

2. Introduction

process. Rather than simply asking AI for complete solutions, intentional
prompting focuses on:

1. Understanding programming concepts well enough to evaluate AI-
generated code

2. Guiding AI through a structured development methodology
3. Using AI as a tool for learning and exploration rather than just

output
4. Maintaining the human developer as the architect and decision-maker

This approach recognizes that the most powerful development workflow
combines human creativity, judgment, and domain knowledge with AI’s
ability to handle routine coding tasks, suggest implementations, and provide
contextual information.

2.2.1. Intentional Prompting vs. Prompt Engineering

It’s important to distinguish intentional prompting from the related but
distinct field of prompt engineering:

Prompt Engineering focuses primarily on crafting effective instructions
for AI systems to produce desired outputs. It encompasses techniques
like zero-shot and few-shot prompting, chain-of-thought prompting, and
role-based prompting. The emphasis is on optimizing the prompt itself to
get the best possible output from the AI.

Intentional Prompting builds upon prompt engineering but differs in
several key ways:

1. Methodology vs. Technique: Intentional prompting provides
a complete methodology (the six-step approach) rather than just
techniques for crafting prompts.

16

2.3. Why Intentional Prompting Matters

2. Process vs. Output: While prompt engineering prioritizes getting
optimal outputs, intentional prompting emphasizes the development
process itself as the primary value.

3. Human Agency: Intentional prompting explicitly maintains the hu-
man as the director and decision-maker throughout the development
process, not just the prompt creator.

4. Learning Focus: Intentional prompting has an explicit educational
component, designed to enhance human understanding and skills
alongside producing code.

5. Structured Framework: Intentional prompting embeds prompt
techniques within a systematic framework for approaching program-
ming problems, rather than treating prompting as an isolated activity.

In essence, intentional prompting integrates prompt engineering techniques
within a broader methodology that maintains human agency and prior-
itizes understanding and learning throughout the development process.
This distinction becomes especially important as AI capabilities advance
toward autonomous coding agents, where maintaining human oversight
and understanding becomes increasingly critical.

For a comprehensive comparison of intentional prompting with other ap-
proaches to AI-assisted programming—including prompt engineering, pseu-
docode for LLMs, agentic programming, and vibe coding—see the compar-
ative framework in Appendix C: AI Tool Comparison.

2.3. Why Intentional Prompting Matters

As AI coding assistants become increasingly capable, there’s a risk that
developers might:

• Become overly dependent on AI suggestions without understanding
them

17

2. Introduction

• Lose skills in fundamental programming concepts
• Accept sub-optimal solutions because they’re quick and easy

Intentional prompting addresses these concerns by providing a framework
that helps developers use AI effectively while continuing to grow their own
skills and understanding.

For students learning to code, this approach is particularly valuable. Rather
than seeing AI as either a shortcut to avoid learning or a forbidden tool,
intentional prompting teaches students to use AI as a learning partner that
enhances their educational journey.

2.3.1. Beyond Automation: The Case for Human Oversight

The rapid advancement of AI has led to the emergence of agentic
programming—where AI agents can autonomously perform complex
development tasks with minimal human intervention. While these systems
show impressive capabilities in routine coding tasks, they also highlight
precisely why methodologies like intentional prompting remain essential.

Research reveals that even the most sophisticated AI agents face funda-
mental limitations that necessitate human oversight:

1. Understanding Gap: AI agents lack true comprehension of problem
context and domain requirements. They can pattern-match solutions
but miss critical business or user needs that aren’t explicitly stated.

2. Accountability and Ethics: Humans must bear responsibility for
decisions with real-world impacts. Delegating this completely creates
accountability gaps when things go wrong.

3. Novel Problem Solving: While agents excel at pattern recogni-
tion, they struggle with truly novel problems requiring innovative
approaches outside their training distribution.

18

2.4. The Six-Step Methodology

4. Quality Thresholds: Agents lack the meta-awareness to know
when a solution is “good enough” versus when to keep refining for
the specific context.

5. Creative Direction: Human value judgments about elegance, main-
tainability, and design philosophy are subjective but crucial for cre-
ating coherent, high-quality systems.

6. Integration Knowledge: Humans better understand how code
fits into larger systems, organizational constraints, and unstated
requirements.

7. Skill Development: The learning benefits of intentional program-
ming disappear if fully automated, undermining the educational value
essential for long-term developer growth.

Even with sophisticated agent networks, complex programming will likely
remain a collaborative process with humans providing critical validation,
creative direction, context understanding, and accountability. The inten-
tional prompting methodology provides a structured framework for this
collaboration, ensuring that humans maintain control of the development
process while leveraging the strengths of AI assistants.

2.4. The Six-Step Methodology

At the heart of intentional prompting is a structured methodology that
guides the development process:

1. Restate the problem in your own words
2. Identify input and output requirements
3. Work the problem by hand with concrete examples
4. Write pseudocode to outline the solution strategy
5. Convert to code (with AI assistance as appropriate)
6. Test with a variety of data, especially edge cases

19

2. Introduction

This methodology works both with and without AI assistance, but becomes
particularly powerful when combined with intentional prompting techniques
that guide AI tools effectively.

2.5. Who Should Read This Book

This book is designed for:

• Professional developers adapting to AI-assisted workflows
• Students learning programming in an AI-enabled world
• Educators teaching programming in the age of AI
• Technical managers developing best practices for AI integration

No matter where you are in your programming journey, intentional prompt-
ing offers a framework for leveraging AI tools effectively while continuing
to develop your own skills and understanding.

2.6. Related Materials

This book is part of a comprehensive series for mastering modern software
development in the AI era:

Foundational Methodology

• Conversation, Not Delegation: Mastering Human-AI Development
(this book)

Python Track

• Think Python, Direct AI: Computational Thinking for Beginners -
Perfect for absolute beginners

• Code Python, Consult AI: Python Fundamentals for the AI Era -
Core Python knowledge

20

https://michaelborck-books.github.io/conversation-not-delegation
https://michaelborck-books.github.io/think-python-direct-ai
https://michaelborck-books.github.io/code-python-consult-ai

2.6. Related Materials

• Ship It: Python in Production - Professional tools and workflows

Web Track

• Build Web, Guide AI: Business Web Development with AI - HTML,
CSS, JavaScript, WordPress, React

In the following chapters, we’ll explore the principles of intentional prompt-
ing in depth, examine the six-step methodology with practical examples,
and develop patterns for effective collaboration between human developers
and AI assistants.

21

https://michaelborck-books.github.io/ship-it-python-in-production
https://michaelborck-books.github.io/build-web-guide-ai

3. The AI Revolution in
Programming

3.1. Evolution of Programming Tools

The history of programming is a story of continuous abstraction. From
machine code to assembly language, from procedural to object-oriented
paradigms, each evolution has aimed to make programming more accessible,
maintainable, and powerful.

AI coding assistants represent the next major evolution in this timeline.
Rather than simply providing syntax highlighting or code completion based
on predefined rules, these tools can understand intent, generate complete
solutions, and explain complex concepts in natural language.

3.2. Types of AI Coding Assistants

Several categories of AI tools have emerged to assist programmers:

3.2.1. Code Completion Tools

Tools like GitHub Copilot, Amazon CodeWhisperer, and TabNine integrate
directly into the development environment and suggest code completions
as you type. These suggestions range from completing a single line to
generating entire functions.

23

3. The AI Revolution in Programming

These tools excel at: - Automating repetitive coding patterns - Suggesting
syntactically correct code - Implementing common algorithms and data
structures - Generating boilerplate code

3.2.2. Conversational AI Assistants

Conversational AI models like Claude, ChatGPT, and Bard take a different
approach. Rather than integrating directly into the code editor, they
provide a chat interface where developers can: - Ask questions about
programming concepts - Request code suggestions for specific problems -
Explain existing code - Debug issues - Discuss design alternatives

3.2.3. IDE Integrations

Some tools combine both approaches, integrating conversational AI di-
rectly into development environments. Examples include: - Visual Studio
IntelliCode - JetBrains AI Assistant - Cursor (formerly Mutable AI)

These tools allow developers to maintain their familiar workflow while
accessing AI assistance.

3.3. Capabilities and Limitations

Understanding the true capabilities and limitations of AI coding assistants
is crucial for using them effectively.

3.3.1. What AI Can Do Well

• Generate syntactically correct code in most programming languages
• Implement standard algorithms and design patterns
• Convert between similar programming languages

24

3.4. Common Misconceptions

• Explain code and programming concepts
• Identify common bugs and suggest fixes
• Provide alternative implementations for the same problem

3.3.2. Current Limitations

• Limited understanding of business context and domain-specific re-
quirements

• Difficulty with novel or extremely complex algorithms
• Generation of plausible-looking but incorrect code for edge cases
• Outdated knowledge of newer frameworks or libraries
• Inconsistent code quality depending on prompt clarity
• Potential to reinforce common programming misconceptions

Understanding these limitations is not about dismissing AI assistance, but
about knowing when and how to rely on AI versus your own judgment.

3.4. Common Misconceptions

Several misconceptions about AI coding assistants can lead to their ineffec-
tive use:

3.4.1. “AI Will Replace Programmers”

Reality: AI tools augment programmer capabilities rather than replacing
the need for human judgment, creativity, and domain knowledge. The
skills required for programming are evolving, not disappearing.

25

3. The AI Revolution in Programming

3.4.2. “AI Always Produces Correct Code”

Reality: AI-generated code often contains subtle bugs, inefficiencies, or
security vulnerabilities that require human review. The most effective
workflows involve careful review and testing of AI suggestions.

3.4.3. “Using AI Is Cheating”

Reality: AI assistance is simply another tool in the developer’s toolkit.
The skill lies in how effectively you direct the AI, evaluate its outputs, and
integrate suggestions into your work.

3.4.4. “AI Works Best When Asked for Complete Solutions”

Reality: AI often produces better results when guided through a step-by-
step process that breaks down complex problems and allows for iterative
refinement.

3.5. The Human-AI Partnership Model

The most productive relationship with AI coding assistants is a partnership
model rather than a service model. In this partnership:

3.5.1. The Human Provides:

• Problem understanding and domain knowledge
• Architectural direction and design constraints
• Quality standards and evaluation criteria
• Creative direction and novel approaches
• Critical thinking about suggested solutions

26

3.6. Emerging Approaches to AI-Assisted Development

3.5.2. The AI Provides:

• Implementation suggestions
• Alternative approaches
• Documentation and explanations
• Memory of syntax and APIs
• Help with tedious or repetitive tasks

This partnership model focuses on complementary strengths rather than
replacement. It recognizes that the combination of human creativity and
judgment with AI capabilities creates possibilities that neither could achieve
alone.

3.6. Emerging Approaches to AI-Assisted
Development

As AI coding tools have advanced, distinct philosophical approaches to
their use have emerged. These approaches represent different perspectives
on how developers should integrate AI into their workflow.

3.6.1. Vibe Coding: Embracing AI-Led Development

“Vibe coding” (or “vibe programming”) represents a paradigm shift where
developers largely defer to AI for code generation. Introduced by Andrej
Karpathy, a co-founder of OpenAI and former AI leader at Tesla, in early
2025, this approach encourages developers to “fully give in to the vibes,
embrace exponentials, and forget that the code even exists.”

The vibe coding philosophy centers around:

27

3. The AI Revolution in Programming

1. Natural Language Prompting: Developers describe desired func-
tionality in plain language rather than focusing on implementation
details.

2. Minimal Code Review: Code is often accepted with limited
scrutiny, prioritizing speed and output over deep understanding.

3. Rapid Iteration: Developers quickly implement AI suggestions,
test for functionality, and refine through further prompts rather than
manual coding.

4. Reduced Technical Focus: As Karpathy described it, “It’s not
really coding - I just see things, say things, run things, and copy-paste
things, and it mostly works.”

This approach has found particular traction in rapid prototyping and
startup environments. Y Combinator reportedly found that 25% of startups
in its Winter 2025 batch had codebases that were 95% AI-generated.

While vibe coding offers unprecedented speed and accessibility, it presents
challenges in debugging, maintenance, and knowledge development. Critics
argue that it can lead to poor code quality, security vulnerabilities, and a
devaluation of fundamental programming skills.

3.6.2. Intentional Prompting: Human-Directed AI Assistance

Intentional prompting, which we’ll explore throughout this book, takes a
different approach. Rather than deferring to AI, it views AI as a powerful
assistant within a human-directed process.

This approach emphasizes:

1. Structured Problem-Solving: Following a deliberate methodology
that starts with understanding the problem

2. Selective AI Integration: Leveraging AI at specific points in the
development process while maintaining human agency

28

3.7. Looking Ahead

3. Critical Evaluation: Carefully reviewing AI-generated code for
correctness, efficiency, and security

4. Learning-Focused Collaboration: Using AI to enhance under-
standing rather than bypass it

Intentional prompting recognizes AI’s value but prioritizes the developer’s
control and comprehension of the final solution.

3.6.3. Collaborative Integration: Finding the Middle Ground

Between vibe coding’s emphasis on speed and intentional prompting’s focus
on process lies a spectrum of approaches that organizations are adopting:

1. Permissive Acceptance: Maximizing efficiency by broadly accept-
ing AI outputs with minimal oversight

2. Dismissive Rejection: Maintaining traditional development meth-
ods with limited AI assistance

3. Collaborative Integration: Establishing defined processes where
humans and AI work together with clear boundaries

The collaborative integration approach has gained traction in many pro-
fessional environments, offering a middle ground that captures efficiency
gains while maintaining code quality and developer growth.

3.7. Looking Ahead

As AI coding assistants continue to evolve, we can expect:

• Greater specialization in domain-specific tools
• Better integration with development workflows
• Improved reasoning about complex systems
• Enhanced ability to understand, refactor, and maintain legacy code

29

3. The AI Revolution in Programming

• More personalized assistance based on your coding style and prefer-
ences

These advancements will not eliminate the need for skilled developers, but
will continue to transform how we approach programming tasks and what
skills are most valuable.

In the next chapter, we’ll explore the core principles of intentional
prompting—the mindset and practices that enable you to maintain agency
and maximize learning while leveraging AI assistance.

30

4. Principles of Intentional
Prompting

4.1. The Spectrum of AI Integration Approaches

Before diving into the core principles of intentional prompting, it’s impor-
tant to understand the broader landscape of approaches to integrating AI
into development workflows. These approaches reflect different philosophies
about the role of AI and human developers.

31

4. Principles of Intentional Prompting

Figure 4.1.: AI-Human Collaboration

32

4.1. The Spectrum of AI Integration Approaches

4.1.1. Permissive Approach: “Just Take the Answer”

The permissive approach involves accepting AI outputs with minimal
human oversight or intervention. In this model, developers largely defer to
AI-generated recommendations, content, and decisions.

Advantages: - Maximum efficiency and speed in completing tasks -
Reduced cognitive load on humans - Quick access to AI capabilities without
friction - Easier adoption for non-technical users

Limitations and Risks: - Potential propagation of AI errors or biases -
Limited human learning and skill development - Reduced critical thinking
and problem-solving practice - Overreliance may lead to degraded human
capabilities over time - Lack of contextual understanding in complex
situations

This approach aligns closely with the “vibe coding” philosophy discussed
in the previous chapter, prioritizing speed and output over process and
understanding.

4.1.2. Dismissive Approach: “Reject AI Outright”

At the opposite end of the spectrum is the dismissive approach, character-
ized by skepticism or outright rejection of AI tools. This stance prioritizes
traditional methods and maintains full human control.

Advantages: - Maintaining full human control and autonomy - Preserving
traditional skills and methods - Avoiding risks associated with AI errors
- Clear human accountability and ownership - Preserving jobs and roles
that might otherwise be automated

Limitations: - Missing potential productivity and quality improvements
- Requiring more human time and resources - Unnecessary repetitive or
mechanical work for employees - Limited access to AI’s data processing
and pattern recognition capabilities

33

4. Principles of Intentional Prompting

4.1.3. Collaborative Approach: “Human-Directed AI Assistance”

Between these extremes lies the collaborative approach, which views AI as
a tool that enhances human capabilities without replacing human judgment.
This middle-ground philosophy establishes a partnership where humans
direct AI systems, critically evaluate their outputs, and maintain decision-
making authority.

Advantages: - Combining human judgment with AI efficiency - Main-
taining human oversight while leveraging AI strengths - Enabling iterative
improvement through feedback - Preserving human agency and account-
ability - Creating opportunities for human upskilling alongside AI use

Challenges: - Requires more thought and time than pure acceptance -
Demands both AI literacy and domain expertise - Needs more complex
workflows and training - Requires clear frameworks for when to trust or
question AI outputs

Intentional prompting sits firmly within this collaborative approach, view-
ing AI as a thoughtful assistant rather than a replacement for human
judgment.

4.1.4. Comparing Intentional Prompting vs. Vibe Programming

To illustrate the differences in these approaches, the following table com-
pares intentional prompting with vibe programming across several impor-
tant dimensions:

Dimension Intentional Prompting Vibe Programming

Primary Goal Understanding and skill
development alongside
output

Speed and output
production

34

4.1. The Spectrum of AI Integration Approaches

Dimension Intentional Prompting Vibe Programming

Development
Process

Structured, methodical
approach with defined
steps

Rapid, conversational,
minimal planning

Human
Involvement

Human directs process and
makes key decisions

Human describes desired
outcome, AI leads
implementation

Code Review Thorough review with
critical evaluation

Minimal review, focus on
functionality over quality

Debugging
Approach

Systematic investigation
based on understanding

Trial-and-error, asking AI
to fix issues

Learning
Outcome

Progressive skill
development and deeper
understanding

Potentially limited
technical growth, focus on
prompt crafting

Code Quality Optimized for readability,
maintainability, efficiency

Prioritizes working
functionality over
optimality

Ideal Use
Cases

Complex systems,
educational contexts,
enterprise software

Rapid prototyping,
MVPs, personal projects,
non-critical applications

Knowledge
Transfer

Facilitates team
understanding and
knowledge sharing

May create knowledge
silos where only original
developer understands
prompting approach

Maintenance Designed for long-term
maintenance and evolution

May present challenges
for future maintenance or
extension

This comparison isn’t meant to suggest that one approach is universally
superior to the other. Rather, each has contexts where it may be more
appropriate. Intentional prompting offers significant advantages for educa-
tional settings, complex systems, team environments, and situations where

35

4. Principles of Intentional Prompting

code quality and maintainability are paramount.

4.1.5. Example: Different Approaches to the Same Challenge

To make these differences concrete, let’s examine how the permissive (vibe
coding) and collaborative (intentional prompting) approaches would handle
the same programming challenge: creating a function to validate email
addresses.

4.1.5.1. Permissive Approach (Vibe Coding)

Human: Write a function that validates email addresses.

AI generates:

def validate_email(email):
import re
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return bool(re.match(pattern, email))

Human: It’s not working for some emails with plus signs. Fix it.

AI generates updated code:

def validate_email(email):
import re
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return bool(re.match(pattern, email))

Human: It’s still not working for email+alias@domain.com. Can you fix
it?

AI revises again:

36

4.1. The Spectrum of AI Integration Approaches

def validate_email(email):
import re
Complex pattern handling all edge cases
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return bool(re.match(pattern, email))

The permissive approach emphasizes speed but may involve several itera-
tions of trial and error without deepening understanding of the problem or
solution.

4.1.5.2. Collaborative Approach (Intentional Prompting)

Human: I need to create an email validation function. Before writing
code, let’s discuss what makes a valid email address and identify the key
requirements.

AI: Provides explanation of email format requirements and edge cases

Human: Based on those requirements, let’s brainstorm approaches. What
are the trade-offs between using regular expressions versus parsing the
parts individually?

AI: Explains different approaches with their advantages and limitations

Human: I’ll choose the regex approach for simplicity. Let’s write pseu-
docode first:

function validateEmail(email):
if email is empty:
return false

if email doesn't contain exactly one @ symbol:
return false

split email into local and domain parts
check if local part meets requirements

37

4. Principles of Intentional Prompting

check if domain part has at least one period and valid format
return true if all checks pass

AI: Provides feedback on pseudocode and suggests improvements

Human: Now let’s implement this in Python with a clear approach:

def validate_email(email):
"""
Validates an email address according to RFC 5322 standards.

Args:
email: String to validate as an email address

Returns:
bool: True if the email is valid, False otherwise

"""
import re

Basic pattern that handles most common email formats
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'

Initial validity check
if not email or not isinstance(email, str):

return False

return bool(re.match(pattern, email))

Human: Let’s test this with various cases including edge cases: - user@ex-
ample.com - user+alias@example.com - user.name@example.co.uk -
user@sub.example.com - incomplete-email-without-domain\@ - incomplete-
email-without-username\@example.com - user\@incomplete-domain

38

4.2. Maintaining Human Agency

The collaborative approach takes longer initially but builds understanding,
produces better-documented code, and addresses edge cases proactively
rather than reactively.

This example illustrates how the different approaches affect not just the
final code but the entire development process and learning experience.

4.2. Maintaining Human Agency

At the core of intentional prompting is the principle of human agency -
the programmer remains the architect and decision-maker throughout the
development process, not just a consumer of AI-generated solutions.

4.2.1. Directive vs. Delegative Approaches

There are two fundamental ways to interact with AI coding assistants:

Delegative Approach: Handing off problems entirely to the AI and
accepting its solutions with minimal scrutiny or direction.

Directive Approach: Guiding the AI through a structured process,
maintaining control over architecture and design decisions, and critically
evaluating its outputs.

Intentional prompting emphasizes the directive approach, where you:

• Break down problems before presenting them to AI
• Provide clear constraints and requirements
• Review and question AI-generated code
• Make deliberate decisions about when and how to incorporate AI

suggestions

39

4. Principles of Intentional Prompting

4.2.2. Techniques for Maintaining Agency

• Frame the problem yourself before asking the AI for help
• Establish evaluation criteria for solutions before generating them
• Request multiple approaches to avoid anchoring on the first

solution
• Question assumptions in AI-generated code
• Make final integration decisions based on your understanding,

not convenience

4.3. Understanding vs. Copying

A critical distinction in intentional prompting is the difference between
understanding a solution and merely copying it. The goal is not just
working code, but comprehension that builds long-term programming
capabilities.

4.3.1. The “Black Box” Problem

When developers copy AI-generated code without understanding it, they
create “black boxes” in their codebase - components they can’t effectively
debug, maintain, or explain. Over time, this leads to brittle systems and
stunted professional growth.

4.3.2. Signs of Understanding

You understand code when you can: - Explain how it works to someone else
- Modify it confidently to handle new requirements - Identify potential edge
cases it might not handle - Recognize its performance characteristics and
limitations - Connect it to broader programming concepts and patterns

40

4.4. Process Over Output

4.3.3. Strategies for Building Understanding

• Request explanations of generated code
• Ask “what if” questions about edge cases or modifications
• Trace through execution with specific examples
• Modify the code to handle different scenarios
• Compare different implementations of the same functionality

4.4. Process Over Output

Intentional prompting emphasizes the development process rather than just
the final code. This focus on process leads to better long-term outcomes in
both code quality and developer growth.

4.4.1. Why Process Matters

• Better architecture: A thoughtful process leads to better-designed
code

• Fewer bugs: Systematic approaches catch edge cases that rushed
solutions miss

• Easier maintenance: Code developed through a clear process is
typically more readable and maintainable

• Knowledge transfer: Process-focused development makes it easier
to onboard others

• Skill development: Focusing on process builds transferable skills
rather than point solutions

4.4.2. The Six-Step Process

The six-step programming methodology (which we’ll explore in depth
in Part 2) provides a structured process that works with or without AI

41

4. Principles of Intentional Prompting

assistance:

1. Restate the problem
2. Identify inputs and outputs
3. Work through examples by hand
4. Write pseudocode
5. Convert to working code
6. Test thoroughly

4.4.3. Integrating AI Into Your Process

Rather than replacing your process, AI should enhance it: - Use AI to
explore problem variations during problem restatement - Generate test
cases during input/output identification - Verify your manual examples
- Suggest and refine pseudocode - Help convert pseudocode to working
implementations - Generate comprehensive test cases

4.5. The Learning Mindset

Intentional prompting is fundamentally about continuous learning rather
than just task completion. This mindset treats every programming chal-
lenge as an opportunity to deepen understanding and build skills.

4.5.1. Characteristics of a Learning Mindset

• Curiosity about how and why solutions work
• Comfort with not knowing everything immediately
• Desire to understand deeply rather than just solve the immediate

problem
• Willingness to explore alternatives even after finding a working

solution

42

4.6. Ethical Considerations

• Reflection on the development process to improve future ap-
proaches

4.5.2. AI as a Learning Partner

When approached with a learning mindset, AI assistants become powerful
learning tools: - Use AI to explore concepts you don’t fully understand -
Ask AI to compare different approaches and explain tradeoffs - Request
explanations of unfamiliar code patterns - Use AI to find gaps in your
understanding - Challenge AI-generated solutions to deepen your own
thinking

4.5.3. Intentional Learning Techniques

• Concept exploration: Ask the AI to explain concepts in multiple
ways

• Implementation comparison: Request different implementations
of the same functionality

• Knowledge testing: Explain a concept to the AI and ask for
feedback

• Deliberate challenge: Introduce constraints that force exploration
of new approaches

• Reflective questioning: Ask “why” questions about code decisions

4.6. Ethical Considerations

Intentional prompting includes ethical considerations about the use of AI
in the development process.

43

4. Principles of Intentional Prompting

4.6.1. Attribution and Transparency

• Be transparent about AI contributions to your code
• Understand your organization’s policies about AI-assisted develop-

ment
• Consider adding attribution comments for significant AI contributions
• Maintain clear documentation of human design decisions

4.6.2. Security and Quality Responsibility

• Always review AI-generated code for security vulnerabilities
• Never delegate final quality assurance to AI tools
• Maintain awareness of common security issues in AI-generated code
• Establish clear review processes for AI-assisted development

4.6.3. Bias and Fairness

• Be aware that AI tools may embed biases from their training data
• Review code for fairness issues, especially in user-facing features
• Consider diverse perspectives when evaluating AI-generated solutions
• Question assumptions that might embed problematic patterns

4.6.4. Professional Development Balance

• Balance efficiency gains from AI with skill development needs
• Identify core skills you want to strengthen, even with AI assistance
• Create intentional learning projects where you limit AI assistance
• Use AI to stretch beyond your current capabilities rather than stay

within them

44

4.7. Addressing Common Concerns and Resistance to LLMs

4.7. Addressing Common Concerns and Resistance to
LLMs

Despite their utility, Large Language Models face resistance from many
programmers and educators. Some of these concerns have deep historical
roots, while others arise from the unique characteristics of modern LLMs.
Understanding and addressing these concerns is essential for effective
adoption of intentional prompting.

4.7.1. The Ambiguity of Natural Language

As far back as 1977, computer scientist Edsger W. Dijkstra presented a
compelling critique of natural language programming in his essay “On
the foolishness of ‘natural language programming’ ”. Dijkstra argued that
programming fundamentally requires “the care and accuracy that is char-
acteristic for the use of any formal symbolism” and that the inherent
ambiguity of natural language made it unsuitable for the precision required
in programming.

Dijkstra’s concerns were valid for his time, but modern LLM-based ap-
proaches offer new possibilities through iterative refinement processes:

• Progressive disambiguation - Iterative approaches provide mech-
anisms to gradually eliminate ambiguities through multiple rounds
of interaction, transforming imprecise natural language into precise
formal representations

• Structured frameworks - Methodologies like intentional prompting
add structure to otherwise ambiguous interactions

• Human-in-the-loop validation - The human programmer validates
outputs and maintains final authority over implementation decisions

The intentional prompting methodology directly addresses Dijkstra’s con-
cerns by providing a framework that bridges natural language and formal

45

4. Principles of Intentional Prompting

code, using the former as an entry point rather than a replacement for the
latter.

4.7.2. The Non-Deterministic Nature of LLMs

Another significant concern involves the non-deterministic behavior of
LLMs—the fact that they can produce different outputs even when given
the same input. This unpredictability raises legitimate questions about
reliability, especially in mission-critical applications.

Research has documented significant variations in LLM performance across
multiple runs, with accuracy varying up to 15% and gaps between best and
worst performance reaching as high as 70%. This variability stems from:

1. Input interpretation variability - LLMs may interpret the same
natural language prompt differently across different runs

2. Output generation variability - Even with the same interpretation,
the code generated may vary due to sampling methods

The intentional prompting methodology addresses these concerns
through:

• Structured evaluation - The methodology provides clear criteria
for evaluating generated code

• Explicit testing - Step 6 (Test with Data) ensures thorough valida-
tion of any generated solution

• Human oversight - The human programmer maintains control over
the development process, reviewing and modifying generated code as
needed

• Iterative refinement - The methodology embraces multiple itera-
tions to converge on reliable solutions

46

4.7. Addressing Common Concerns and Resistance to LLMs

4.7.3. Procedural Knowledge Transfer

Interestingly, LLMs excel at procedural tasks because they’ve inherited
human problem-solving patterns through their training data. Research
shows that LLMs have absorbed procedural knowledge through exposure
to:

• Error-checking protocols from technical manuals
• Creative iteration cycles in writing samples
• Mathematical proof structures in STEM literature
• Software engineering best practices from code repositories

This explains why models respond well to structured methodologies like
intentional prompting—they’re activating latent procedural knowledge that
mirrors human problem-solving approaches.

The six-step methodology leverages this characteristic by providing a
framework that:

• Activates the model’s latent understanding of systematic problem-
solving

• Provides clear procedural guidance that aligns with effective human
workflows

• Creates a shared procedural language between human and AI

4.7.4. Finding the Right Balance

The most effective approach to LLM integration lies in finding the right
balance between permissive acceptance and dismissive rejection. The inten-
tional prompting methodology represents this balanced middle ground:

• It acknowledges LLMs’ limitations regarding ambiguity and non-
determinism

• It establishes guardrails through a structured methodology

47

4. Principles of Intentional Prompting

• It leverages LLMs’ strengths in pattern recognition and procedural
knowledge

• It maintains human agency and oversight throughout the development
process

By addressing these concerns directly and providing a structured framework
for human-AI collaboration, intentional prompting offers a pragmatic
approach that captures the benefits of AI assistance while mitigating its
risks.

4.8. Putting Principles Into Practice

These principles—maintaining agency, understanding vs. copying, process
over output, the learning mindset, ethical considerations, and addressing
common concerns—form the foundation of intentional prompting.

In the next section, we’ll explore how these principles are applied through
the six-step programming methodology, providing a structured approach
to developing software with AI assistance.

48

Part III.

Methodology

49

5. The Six-Step Programming
Methodology

5.1. Overview of the Methodology

The six-step programming methodology provides a structured approach to
solving problems that works both with and without AI assistance. This
methodology focuses on understanding before implementation and ensures
that programmers maintain control of the development process.

Figure 5.1.: Six-Step Methodology Diagram

For a more detailed view of this methodology:

51

5. The Six-Step Programming Methodology

Figure 5.2.: Detailed Six-Step Methodology

52

5.1. Overview of the Methodology

As shown in the diagram, the methodology divides programming into two
distinct phases:

5.1.1. Design (Thinking) Phase - Steps 1-4

This phase focuses on understanding and planning before any actual coding
begins:

1. Restate the problem in your own words
2. Identify input and output requirements
3. Work the problem by hand with concrete examples
4. Write pseudocode to outline the solution strategy

5.1.2. Coding (Doing) Phase - Steps 5-6

Only after completing the design phase do we move to implementation:

5. Convert to code (with AI assistance as appropriate)
6. Test with a variety of data, especially edge cases

This clear separation between thinking and doing is crucial. The pseudocode
created in Step 4 serves as a bridge between these phases, transforming
into comments that guide implementation in Step 5.

5.1.3. The Hidden Structure of the Methodology

While the six steps appear sequential, the methodology contains several
important hidden elements:

1. Meaningful Divisions: The separation between Design and Coding
reflects different modes of thinking - first conceptual, then practical.

53

5. The Six-Step Programming Methodology

2. Bridging Elements: Pseudocode serves as both the final product
of the design phase and the starting framework for the coding phase.

3. Feedback Loops: The methodology is inherently iterative, with
testing potentially sending you back to earlier steps for refinement.

4. Understanding to Doing: The methodology follows a natural
progression from abstract understanding to concrete implementation.

This methodology isn’t revolutionary on its own—it draws from established
problem-solving approaches and computational thinking practices like
Waterfall, Agile, and Test-Driven Development. What makes it valuable in
the age of AI is how it provides a framework for intentional prompting and
collaboration with AI assistants while maintaining human understanding
and control.

5.1.4. Adapting to Your Preferred Methodology

It’s important to note that we’re presenting this simplified methodology as
a concrete example of how to structure AI-assisted development, not as
the only valid approach. The six-step methodology serves as a template
that demonstrates key principles of intentional prompting, which you can
adapt to your preferred development methodology or domain.

5.1.4.1. Integration with Other Development Approaches

These principles can be integrated into various development methodolo-
gies:

• Agile: Use the problem understanding and design steps during sprint
planning, with implementation and testing occurring within sprint
cycles

• Test-Driven Development: Enhance the TDD cycle by adding
explicit problem restatement and planning before writing tests

54

5.2. How AI Changes the Process

• Domain-Driven Design: Incorporate intentional prompting to
help define the ubiquitous language and domain models

5.1.4.2. Customizing for Your Context

When adapting these concepts to your situation, consider:

1. Identify key decision points where human understanding and
direction are crucial

2. Establish clear boundaries for AI assistance within your workflow
3. Create explicit steps for critical evaluation of AI outputs
4. Define integration points where AI-generated components connect

with human-directed architecture

The core value proposition—maintaining human understanding while lever-
aging AI capabilities—remains valid regardless of which specific methodol-
ogy you prefer. What’s most important is having a structured approach
to human-AI collaboration rather than following these exact six steps
verbatim.

Use this methodology as inspiration to develop your own intentional prompt-
ing workflow that aligns with your team’s practices, domain requirements,
and development philosophy while preserving the principles of human
direction and understanding.

5.2. How AI Changes the Process

AI coding assistants change the dynamics of this methodology in several
important ways:

55

5. The Six-Step Programming Methodology

5.2.1. Acceleration and Exploration

AI can accelerate many steps in the process, allowing for: - Rapid explo-
ration of problem variations (Step 1) - Comprehensive consideration of
edge cases (Step 2) - Verification of manual solutions (Step 3) - Generation
of alternative pseudocode approaches (Step 4) - Quick implementation of
solutions (Step 5) - Comprehensive test case generation (Step 6)

5.2.2. The Temptation to Skip Steps

With powerful AI tools, there’s a temptation to skip directly to imple-
mentation (Step 5). This is the core challenge that intentional prompting
addresses—maintaining a disciplined approach even when AI makes short-
cuts possible.

5.2.3. New Capabilities and Responsibilities

AI introduces new capabilities at each step: - Discussing problem nuances
in natural language - Generating edge cases you might not have considered
- Checking your manual approach for errors - Suggesting implementation
strategies you might not know - Implementing complex algorithms efficiently
- Testing boundary conditions systematically

These capabilities create new responsibilities for the programmer: - Criti-
cally evaluating AI suggestions - Maintaining awareness of the problem’s
full context - Verifying that AI-generated code meets requirements - Un-
derstanding the code that ultimately gets deployed

56

5.3. Benefits of a Structured Approach

5.3. Benefits of a Structured Approach

Following a structured methodology with AI assistance offers several im-
portant benefits:

5.3.1. Better Code Quality

By working through all six steps rather than jumping straight to implemen-
tation: - Architectural issues are identified earlier - Edge cases are handled
more comprehensively - Solutions are more robust and maintainable - The
development process becomes more consistent

5.3.2. Enhanced Learning

The structured approach promotes deeper learning: - You develop a habit
of understanding problems before coding - You practice computational
thinking independent of specific languages - You build transferable problem-
solving skills - You learn to evaluate solutions critically

5.3.3. Appropriate AI Integration

The methodology creates natural integration points for AI assistance: -
Each step has clear inputs and outputs for AI collaboration - The division
of responsibility between human and AI is clarified - You maintain control
over the development process - AI complements rather than replaces your
thinking

57

5. The Six-Step Programming Methodology

5.3.4. Reduced Technical Debt

Following all six steps helps avoid the accumulation of technical debt:
- Solutions are designed rather than just implemented - Edge cases are
addressed proactively - Code is tested systematically - Implementations
are understood rather than just accepted

5.4. Case Study: Solving a Problem With and
Without AI

To illustrate the methodology in action, let’s consider a practical program-
ming problem:

Create a function that finds the longest palindromic substring
in a given string.

5.4.1. Approach 1: Delegating to AI (Without Methodology)

A common approach is to simply ask the AI directly:

"Write a function to find the longest palindromic substring in a string."

The AI might produce this solution:

def longest_palindromic_substring(s):
if not s:

return ""

start = 0
max_len = 1

58

5.4. Case Study: Solving a Problem With and Without AI

for i in range(len(s)):
Check for even length palindromes
left, right = i, i + 1
while left >= 0 and right < len(s) and s[left] == s[right]:

if right - left + 1 > max_len:
start = left
max_len = right - left + 1

left -= 1
right += 1

Check for odd length palindromes
left, right = i - 1, i + 1
while left >= 0 and right < len(s) and s[left] == s[right]:

if right - left + 1 > max_len:
start = left
max_len = right - left + 1

left -= 1
right += 1

return s[start:start + max_len]

This code may work, but: - Do you understand how it works? - Could you
modify it if requirements changed? - Are you confident it handles all edge
cases? - Do you know its performance characteristics?

5.4.2. Approach 2: The Six-Step Methodology with AI
Assistance

5.4.2.1. Step 1: Restate the Problem

Human prompt:

59

5. The Six-Step Programming Methodology

I need to write a function that finds the longest palindromic substring in a given string.
Let me restate this problem to make sure I understand it correctly:

I need to find the longest continuous sequence of characters within a string that reads
the same forward and backward. For example, in "babad", the longest palindromic substring
would be "bab" or "aba" (both are valid since they're the same length).

Is this understanding correct? Are there any edge cases I should consider?

AI response: > Your understanding is correct! The function should find
the longest substring that is a palindrome. > > Edge cases to consider: >
- Empty strings > - Strings with no palindromes longer than 1 character
> - Strings where the entire string is a palindrome > - Strings with
multiple palindromic substrings of the same length > - Very long strings
(performance considerations) > - Case sensitivity (usually palindromes are
case-sensitive)

5.4.2.2. Step 2: Identify Inputs and Outputs

Human prompt:

Let me specify the input and output for this function:

Input:
- A string of characters (possibly empty)

Output:
- The longest palindromic substring within the input string
- If there are multiple palindromic substrings with the same maximum length, returning any one of them is acceptable
- If the string is empty, return an empty string
- If there are no palindromes longer than 1 character, return the first character of the string

Do these input and output specifications cover all the necessary cases?

60

5.4. Case Study: Solving a Problem With and Without AI

AI response: > Those specifications are good, but let me suggest a small
clarification: > > For the case where there are no palindromes longer than
1 character, technically every individual character is a palindrome by itself.
So returning the first character would be correct, but it might be clearer
to explicitly state “return any single character” since any character is a
palindrome of length 1. > > With that clarification, your input and output
specifications cover all the necessary cases!

5.4.2.3. Step 3: Work the Problem by Hand

Human work:

Let’s manually trace through a simple example: the string “babad”.

To find palindromes: 1. Start with each position as potential center of
palindrome 2. Expand outward while characters match

For “babad”: - Center at ‘b’ (index 0): Just ‘b’ (length 1) - Center at
‘a’ (index 1): ‘bab’ (length 3) - Center at ‘b’ (index 2): ‘bab’ (length 3) -
Center at ‘a’ (index 3): ‘aba’ (length 3) - Center at ‘d’ (index 4): Just ‘d’
(length 1)

Also check even-length palindromes: - Between ‘b’ and ‘a’ (0-1): None -
Between ‘a’ and ‘b’ (1-2): None - Between ‘b’ and ‘a’ (2-3): None - Between
‘a’ and ‘d’ (3-4): None

Longest palindromes: “bab” or “aba” (both length 3)

Human prompt:

I've worked through the example "babad" by hand and found that the longest palindromic
substrings are "bab" and "aba", both of length 3.

My approach was to check each position as a potential center of a palindrome and expand
outward while the characters match. I also checked for even-
length palindromes that have

61

5. The Six-Step Programming Methodology

their center between two characters.

Does this approach seem correct and efficient? Are there any algorithmic improvements
I should consider?

AI response: > Your approach is correct and is actually the standard
solution for this problem with O(n²) time complexity and O(1) space
complexity. > > The two key components you’ve identified are essential: >
1. Checking odd-length palindromes (with a single character as the center)
> 2. Checking even-length palindromes (with the center between two
characters) > > There are some more complex algorithms like Manacher’s
algorithm that can solve this in O(n) time, but they’re significantly more
complex and typically unnecessary unless you’re dealing with very long
strings where performance is critical. > > Your approach is intuitive and
efficient for most practical purposes!

5.4.2.4. Step 4: Write Pseudocode

Human prompt:

Based on my manual approach, let me write pseudocode for finding the longest palindromic substring:

function longestPalindromicSubstring(string s): if s is empty, return “ ”

start = 0 // Start index of longest palindrome
maxLength = 1 // Length of longest palindrome

// Helper function to expand around center
function expandAroundCenter(left, right):

while left >= 0 and right < length of s and s[left] equals s[right]:
if (right - left + 1) > maxLength:

maxLength = right - left + 1

62

5.4. Case Study: Solving a Problem With and Without AI

start = left
left = left - 1
right = right + 1

// Check each position as potential palindrome center
for i from 0 to length of s - 1:

// Odd length palindromes
expandAroundCenter(i, i)

// Even length palindromes
expandAroundCenter(i, i + 1)

return substring of s from start to start + maxLength

Does this pseudocode correctly implement the approach we discussed?

AI response: > Your pseudocode looks correct and implements the
approach we discussed! It handles both odd and even length palindromes
by expanding around different centers. > > There’s just one small detail to
be careful about: in your expandAroundCenter function, when you update
maxLength and start, make sure you’re considering the current palindrome
(not a future one). So you should check if (right - left + 1) > maxLength
before expanding further. > > Other than that, this pseudocode correctly
captures the solution and is ready to be converted to actual code!

5.4.2.5. Step 5: Convert to Code

Human prompt:

Now I'll convert my pseudocode to Python:

63

5. The Six-Step Programming Methodology

```python
def longest_palindromic_substring(s):

if not s:
return ""

start = 0
max_length = 1

def expand_around_center(left, right):
nonlocal start, max_length
while left >= 0 and right < len(s) and s[left] == s[right]:

current_length = right - left + 1
if current_length > max_length:

max_length = current_length
start = left

left -= 1
right += 1

for i in range(len(s)):
# Odd length palindromes
expand_around_center(i, i)

# Even length palindromes
expand_around_center(i, i+1)

return s[start:start + max_length]

Can you review this code for correctness and suggest any improvements?

**AI response:**
> Your Python implementation looks correct and follows your pseudocode closely! It will find the longest palindromic substring as required.
>

64



5.4. Case Study: Solving a Problem With and Without AI

> A few small observations:
>
> 1. You've correctly used `nonlocal` to update the `start` and `max_length` variables from within the nested function.
>
> 2. The algorithm handles both odd and even length palindromes properly by starting from different center positions.
>
> 3. The time complexity is O(n²) and space complexity is O(1), which is efficient for most inputs.
>
> 4. Your code handles the empty string case correctly.
>
> The implementation is clean and efficient. The only possible optimization would be implementing Manacher's algorithm for linear time complexity, but that's typically unnecessary unless you're dealing with extremely large strings.

#### Step 6: Test with Data

**Human prompt:**

Let’s test my function with various test cases:

1. Normal case: “babad” → Should return “bab” or “aba”
2. Entire string is a palindrome: “racecar” → Should return “racecar”
3. Empty string: “ ” → Should return “ ”
4. Single character: “a” → Should return “a”
5. No palindromes longer than 1: “abc” → Should return “a” (or “b”

or “c”)
6. Multiple palindromes of same length: “aabbaa” → Should return

“aabbaa”
7. Even-length palindrome: “abba” → Should return “abba”

Can you help me verify if my implementation handles all these cases
correctly?

**AI response:**
> Let's trace through your implementation for each test case:

65



5. The Six-Step Programming Methodology

>
> 1. `"babad"`:
> - For center at 'b' (index 0): Just 'b' (length 1)
> - For center at 'a' (index 1): 'bab' (length 3)
> - For center at 'b' (index 2): 'bab' (length 3)
> - For center at 'a' (index 3): 'aba' (length 3)
> - For center at 'd' (index 4): Just 'd' (length 1)
> - The first palindrome of length 3 found is "bab" �
>
> 2. `"racecar"`:
> - Expands from middle 'e' to full string "racecar" �
>
> 3. `""`:
> - Immediate return of empty string �
>
> 4. `"a"`:
> - Single character is a palindrome of length 1 �
>
> 5. `"abc"`:
> - No palindromes longer than 1, returns first character "a" �
>
> 6. `"aabbaa"`:
> - Full string is palindrome �
>
> 7. `"abba"`:
> - Checking even centers finds "abba" �
>
> Your implementation handles all these test cases correctly! It will return the expected outputs for each scenario.

### Comparing the Approaches

The six-step approach with AI assistance:
- Built a clear understanding of the problem
- Identified edge cases explicitly

66



5.4. Case Study: Solving a Problem With and Without AI

- Traced through examples manually
- Developed the solution systematically
- Resulted in a function the programmer fully understands
- Verified handling of important test cases

This approach might take more time initially, but it produces:
- A deeper understanding of the problem
- Confidence in the solution's correctness
- The ability to modify the solution when needed
- A stronger foundation for solving similar problems in the future

## The Methodology in Daily Practice

While the full six-step methodology is valuable for learning and complex problems, it can be adapted for daily use:

### Quick Reference Version

1. **Restate:** What am I really trying to solve?
2. **I/O:** What goes in, what comes out?
3. **Example:** Try a simple case by hand
4. **Plan:** Outline the solution strategy
5. **Code:** Implement with appropriate AI assistance
6. **Test:** Verify with varied test cases

### When to Be More Thorough

Apply the full methodology more carefully when:
- Learning new concepts
- Solving complex problems
- Implementing critical components
- Working with performance-sensitive code
- Teaching or mentoring others

### When to Streamline

67



5. The Six-Step Programming Methodology

For familiar or simpler problems, you might:
- Combine steps 1 and 2 into a quick problem analysis
- Skip step 3 for very familiar problem patterns
- Use AI to help generate pseudocode more quickly
- Focus more heavily on thorough testing

## Key Takeaways

The six-step methodology provides:
- A structured framework for problem-solving
- Natural integration points for AI assistance
- Maintenance of human understanding and control
- A balance between efficiency and depth

In the next six chapters, we'll explore each step of the methodology in detail, examining how AI assistance can be effectively integrated into each part of the process.

`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNoYXB0ZXJzIn0= -->`{=html}

```{=html}
<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNoYXB0ZXJzIiwiYm9va0l0ZW1UeXBlIjoiY2hhcHRlciIsImJvb2tJdGVtTnVtYmVyIjo2LCJib29rSXRlbUZpbGUiOiJjaGFwdGVycy8wNS1yZXN0YXRlLWFuZC1pZGVudGlmeS5xbWQiLCJib29rSXRlbURlcHRoIjoxfQ== -->

68

6. Restate and Identify (Steps 1-2)

The first two steps of the six-step methodology—restating the problem
and identifying inputs and outputs—set the foundation for everything that
follows. This critical preparation phase ensures you fully understand what
you’re trying to solve before diving into implementation.

6.1. Techniques for Problem Restatement

6.1.1. Why Restatement Matters

Restating a problem in your own words serves several important purposes:

1. Clarifies understanding: The process of reformulating forces you
to grapple with the problem’s core elements

2. Identifies ambiguities: Areas you struggle to restate clearly often
reveal hidden assumptions or unclear requirements

3. Provides ownership: Restating moves you from passive recipient
to active problem-solver

4. Creates a reference point: Your restatement becomes a touchstone
to check your solution against

69

6. Restate and Identify (Steps 1-2)

6.1.2. Effective Restatement Approaches

6.1.2.1. The ELI5 Method (Explain Like I’m Five)

Simplify the problem to its most fundamental elements, as if explaining to
someone with no technical background:

Original: “Implement a function to find the shortest path between two
nodes in a weighted directed graph using Dijkstra’s algorithm.”

ELI5 Restatement: “I need to find the fastest route between two points
on a map where some routes are quicker than others.”

6.1.2.2. The Components Breakdown

Identify and separate the main components of the problem:

Original: “Build a cache that stores the results of expensive function calls
and returns the cached result when the same inputs occur again.”

Components Restatement: - “I need to store function results along
with their inputs” - “When a function is called, I need to check if we’ve
seen these inputs before” - “If we have seen the inputs, return the stored
result instead of recalculating” - “If we haven’t seen the inputs, calculate,
store, and return the result”

6.1.2.3. The Constraints Highlight

Explicitly call out all constraints and requirements:

Original: “Create a username validation function for a web form.”

Constraints Restatement: - “Usernames must be 3-20 characters long”
- “Only alphanumeric characters, hyphens, and underscores are allowed”

70

6.1. Techniques for Problem Restatement

- “Cannot start or end with a hyphen or underscore” - “Must be case-
insensitive (uppercase/lowercase doesn’t matter)” - “Cannot contain re-
served keywords from this list…”

6.1.2.4. The Inverse Problem

State what the solution is NOT supposed to do:

Original: “Implement user authentication for the application.”

Inverse Restatement: - “This is NOT about creating user accounts or
registration” - “This is NOT about password reset functionality” - “This is
NOT about authorization (what users can do)” - “This IS about verifying
a user’s identity based on credentials”

6.1.3. Using AI to Enhance Restatement

AI assistants can help refine your problem restatements in several ways:

6.1.3.1. Restatement Verification

After restating the problem yourself, ask the AI to verify your understand-
ing:

I'm working on this problem: [original problem statement]

I've restated it as: [your restatement]

Have I missed anything important or misunderstood any aspect of the problem?

71

6. Restate and Identify (Steps 1-2)

6.1.3.2. Assumptions Identification

AI can help uncover hidden assumptions in the problem:

What assumptions might I be making about this problem that aren't explicitly stated?

6.1.3.3. Edge Case Exploration

AI can help identify boundary conditions and special cases:

What edge cases should I consider for this problem?

6.1.3.4. Domain-Specific Context

For problems in unfamiliar domains, AI can provide context:

Could you explain any domain-specific considerations I should keep in mind when solving this problem?

6.2. Clearly Defining Inputs and Outputs

The second step of the methodology focuses on establishing precise expec-
tations for what goes into your solution and what comes out.

72

6.2. Clearly Defining Inputs and Outputs

6.2.1. Why Input/Output Specification Matters

Clearly defining inputs and outputs:

1. Creates a contract: Establishes exactly what your solution
promises to deliver

2. Guides testing: Forms the basis for comprehensive test cases
3. Simplifies debugging: Makes it clear when the solution is working

incorrectly
4. Facilitates integration: Makes it easier to incorporate your solution

into larger systems

6.2.2. Elements of Complete I/O Specifications

6.2.2.1. For Inputs:

• Data types: The expected types of each input parameter
• Value ranges: Acceptable ranges or constraints for input values
• Required vs. optional: Which inputs can be omitted with default

values
• Format requirements: Any specific formatting expected (e.g., date

formats)
• Size constraints: Limitations on input size (e.g., maximum string

length)

6.2.2.2. For Outputs:

• Return type: The data type of the returned value
• Success indicators: How successful operation is communicated
• Error handling: How errors are communicated (exceptions, error

codes, etc.)
• Special values: Any special return values and their meaning

73

6. Restate and Identify (Steps 1-2)

• Side effects: Any state changes or external effects besides the return
value

6.2.3. Documenting I/O With Examples

Examples can clarify I/O specifications better than abstract descriptions:

Function: calculate_shipping_cost(weight, distance, express=False)

Inputs:
- weight: A positive float representing item weight in kilograms
- distance: A positive float representing distance in kilometers
- express: Optional boolean flag for express shipping (default: False)

Outputs:
- A float representing the shipping cost in dollars
- If input parameters are invalid, raises ValueError

Examples:
- calculate_shipping_cost(2.5, 100) → 12.50
- calculate_shipping_cost(2.5, 100, express=True) → 25.00
- calculate_shipping_cost(-1, 100) → ValueError("Weight must be positive")

6.2.4. Using AI to Explore Edge Cases

AI assistants excel at identifying edge cases and boundary conditions that
might affect your I/O specification.

6.2.4.1. Input Edge Cases

Ask the AI to help identify input edge cases:

74

6.2. Clearly Defining Inputs and Outputs

What are potential edge cases for these inputs?
- weight: A positive float representing item weight in kilograms
- distance: A positive float representing distance in kilometers
- express: Optional boolean flag for express shipping

This might reveal considerations like: - Zero weight or distance - Extremely
large weights or distances - Non-numeric inputs - Negative values - Special
shipping conditions

6.2.4.2. Output Edge Cases

Similarly, explore edge cases for outputs:

What are potential edge cases for the output of this shipping cost calculator?

This might reveal considerations like: - Minimum shipping costs - Free
shipping thresholds - Rounding rules - Currency formatting - Maximum
possible costs

6.2.4.3. Error Condition Exploration

Use AI to explore potential error conditions:

What error conditions should I handle in this shipping cost calculator?

This might reveal considerations like: - Invalid input types - Values outside
acceptable ranges - Unavailable shipping routes - Rate limit restrictions

75

6. Restate and Identify (Steps 1-2)

6.3. Prompting Techniques for Requirement
Clarification

When requirements are unclear or incomplete, AI can help explore the
problem space through directed prompting.

6.3.1. The Five Whys Technique

Repeatedly ask “why” to dig deeper into requirements:

The requirement is to "implement a user profile page."

Why does the user need a profile page?
[AI response]

Why is that important for the user?
[AI response]

Why can't we achieve that with the existing functionality?

This technique helps uncover the underlying goals behind requirements.

6.3.2. Stakeholder Perspective Prompting

Ask the AI to consider requirements from different perspectives:

How might different users view this profile page requirement differently?

- From an end user's perspective: ...
- From an administrator's perspective: ...
- From a security perspective: ...
- From a performance perspective: ...

76

6.4. Practical Exercise: Restate and Identify in Action

6.3.3. Requirement Expansion

Ask the AI to expand terse requirements into detailed specifications:

The requirement is: "Add sorting functionality to the user table."

Can you expand this into a comprehensive specification including:
- Which columns should be sortable
- Default sort order
- How sort state should be preserved
- Performance considerations for large datasets
- UI indicators for sort direction

6.3.4. Comparative Analysis

Use AI to compare different interpretations of ambiguous requirements:

The requirement "ensure the application is responsive" could be interpreted in two ways:
1. The UI should adapt to different screen sizes
2. The application should respond quickly to user interactions

Can you compare these interpretations and their implications for implementation?

6.4. Practical Exercise: Restate and Identify in Action

Let’s apply Steps 1 and 2 to a sample problem:

Original Requirement: “Create a function that converts dates
between different formats.”

77

6. Restate and Identify (Steps 1-2)

6.4.1. Step 1: Restate the Problem

Using Components Breakdown:

• “I need to parse dates from various input formats”
• “I need to convert parsed dates into specified output formats”
• “I need to handle potential errors in the input formats”
• “I need to ensure the conversion preserves the same date and time”

Using Constraints Highlight:

• “The function should accept a string representing a date”
• “The function should accept a source format specification”
• “The function should accept a target format specification”
• “The function should return the date in the target format”
• “The function should raise appropriate errors for invalid inputs”

AI Verification Prompt:

I'm working on a function that converts dates between different formats.

I've restated it as:
- A function that takes a date string, source format, and target format
- Parses the date according to the source format
- Returns the same date formatted according to the target format
- Handles errors for invalid dates or formats

Have I missed anything important in my restatement?

AI Response: > Your restatement covers the main aspects well, but here
are a few additional considerations: > > - Time zones: How should the
function handle time zone information? Should it preserve, convert, or
ignore time zones? > - Locale-specific formatting: Dates can be formatted
differently in different locales (e.g., month names in different languages) >

78

6.4. Practical Exercise: Restate and Identify in Action

- Ambiguous dates: How to handle dates like “01/02/2023” which could
be January 2nd or February 1st depending on region > - Partial dates:
Should the function support dates with missing components (e.g., year only,
month and year only)? > - Format specifications: Will you use standard
format strings (like those in Python’s datetime), or custom specifications?
> > These considerations can greatly affect the scope and complexity of
your function.

6.4.2. Step 2: Identify Input and Output

Input Specification: - date_str: A string representing a date in the
source format - source_format: A string specifying the format of the
input date - target_format: A string specifying the desired output format
- timezone: (Optional) A string representing the timezone of the input
date

Output Specification: - On success: A string representing the same date
in the target format - On error: Raises appropriate exceptions with clear
error messages

Examples: - convert_date("2023-04-01", "%Y-%m-%d", "%m/%d/%Y")
→ "04/01/2023" - convert_date("April 1, 2023", "%B %d, %Y",
"%Y-%m-%d") → "2023-04-01" - convert_date("invalid", "%Y-%m-
%d", "%m/%d/%Y") → ValueError("Unable to parse date")

Edge Case Exploration Prompt:

What edge cases should I consider for a date format conversion function with these inputs?
- date_str: A string representing a date
- source_format: The format of the input date
- target_format: The desired output format

AI Response: > Here are important edge cases to consider: > > Input
Date String Edge Cases: > - Empty string > - Dates with two-digit years

79

6. Restate and Identify (Steps 1-2)

(ambiguity between centuries) > - Dates with missing components (e.g., no
year specified) > - Dates with extra information (whitespace, additional
text) > - Dates with time components when only date is expected > >
Format Specification Edge Cases: > - Empty format strings > - Invalid
format specifiers > - Format requires information not present in the input
date > - Mismatched formats (e.g., time format for date-only string) >
> Calendar/Time Edge Cases: > - Leap years and February 29 > -
Daylight saving time transitions > - Dates before the Unix epoch > - Very
old or future dates > - Non-existent dates (e.g., November 31) > - Dates
from different calendar systems > > Locale-Specific Edge Cases: > -
Month/day order ambiguity (MM/DD vs DD/MM) > - Language-specific
month and day names > - Different separators in different locales > >
Technical Edge Cases: > - Performance with very large dates > - Thread
safety if applicable > - Memory usage concerns

6.5. Moving Forward

With a clear problem restatement and detailed input/output specifications,
you’ve built a solid foundation for the remaining steps of the methodology.
You can now:

1. Work through examples by hand with confidence that you understand
the problem

2. Develop pseudocode that addresses the complete requirements
3. Implement a solution that handles all identified edge cases
4. Test against the comprehensive I/O specification you’ve developed

In the next chapter, we’ll explore Step 3: Working the problem by hand
with concrete examples.

80

7. Work by Hand (Step 3)

Step 3 of the six-step methodology—working through examples by hand—
is often the most tempting to skip, especially with AI assistance. Yet it
remains one of the most valuable practices for deeply understanding a
problem and its solution.

7.1. The Importance of Manual Examples

7.1.1. Why Work By Hand?

Working through examples manually before coding serves several critical
purposes:

1. Builds intuition about how the solution should behave
2. Reveals hidden complexity that might not be apparent in the

problem description
3. Creates test cases that can validate your eventual code
4. Identifies edge cases that require special handling
5. Provides a reference implementation against which to check

automated solutions

This step is especially important in the age of AI coding assistants. When AI
can generate code instantly, manually working through examples becomes
the primary way to maintain a deep understanding of the solutions you
implement.

81

7. Work by Hand (Step 3)

7.1.2. Mental Models vs. Pattern Matching

There are two fundamentally different ways to solve programming prob-
lems:

Pattern matching involves recognizing a problem as similar to something
you’ve seen before and applying a known solution template. This approach
is quick but shallow—it doesn’t build transferable understanding.

Mental modeling involves constructing a detailed understanding of the
problem dynamics and working through how a solution would operate step
by step. This approach builds deeper understanding that transfers to novel
problems.

AI excels at pattern matching but struggles with novel problems that require
creative mental models. By working problems by hand, you develop the
mental modeling skills that complement AI’s pattern-matching strengths.

7.2. Tracing Algorithms Step by Step

7.2.1. The Tracing Process

Tracing an algorithm involves simulating its execution with concrete inputs,
tracking the state changes at each step:

1. Choose representative input values
2. Initialize variables as they would be in the algorithm
3. Follow the logic step by step, recording state changes
4. Note intermediate values at key points
5. Verify the final output matches expectations

This process mirrors what a debugger does but happens in your mind or
on paper, building a deeper understanding of the algorithm’s behavior.

82

7.2. Tracing Algorithms Step by Step

7.2.2. Visualization Techniques

Different problems benefit from different visualization approaches:

7.2.2.1. Tabular Traces

For iterative algorithms, use a table where: - Each row represents one
iteration - Columns show the values of key variables - Special columns can
highlight important conditions or state changes

Iteration Current Value Accumulator Condition Check

1 5 5 5 > 0? Yes
2 4 9 4 > 0? Yes
3 3 12 3 > 0? Yes

7.2.2.2. State Diagrams

For algorithms that manipulate data structures, draw the structure at key
points:

Initial array: [5, 3, 8, 2, 1]

After first partition:
[2, 3, 1] 5 [8]

After recursive calls:
[1] 2 [3] 5 [8]

83

7. Work by Hand (Step 3)

7.2.2.3. Flow Traces

For complex conditional logic, trace the path through the algorithm:

Input: x = 5
1. Is x < 0? No
2. Is x even? No
3. Execute odd-number logic...
4. Return result: 16

7.3. Testing Assumptions

Working by hand is the perfect opportunity to test your assumptions about
the problem and solution approach.

7.3.1. Assumption Categories

Be explicit about testing these types of assumptions:

7.3.1.1. Data Assumptions

• Valid input ranges
• Expected data formats
• Special values (null, empty, extreme values)
• Size limitations

84

7.4. Sharing Your Manual Work with AI

7.3.1.2. Algorithmic Assumptions

• Time and space complexity requirements
• Order sensitivity (does order matter?)
• Uniqueness requirements (are duplicates allowed?)
• Stability expectations (preserving order of equal elements)

7.3.1.3. Output Assumptions

• Expected format of results
• Handling of error conditions
• Ties or multiple valid answers

7.3.2. The “What If?” Technique

For each assumption, ask “What if this assumption is violated?” and trace
through an example:

• What if the input is empty?
• What if values are negative?
• What if there are duplicate entries?
• What if the input is already sorted?

This process helps identify edge cases that your solution must handle.

7.4. Sharing Your Manual Work with AI

Although working by hand is a primarily human activity, AI can still play
a valuable role in the process.

85

7. Work by Hand (Step 3)

7.4.1. Verification of Manual Solutions

After working through examples yourself, use AI to verify your approach:

I've worked through this sorting algorithm example by hand:

Input: [5, 3, 8, 2, 1]

Step 1: Choose pivot 5
Step 2: Partition into [3, 2, 1] and [8]
Step 3: Recursively sort [3, 2, 1] -> [1, 2, 3]
Step 4: Recursively sort [8] -> [8]
Step 5: Combine into [1, 2, 3, 5, 8]

Did I follow the quicksort algorithm correctly? Are there any mistakes in my manual trace?

7.4.2. Exploring Alternative Approaches

AI can suggest different ways to approach the manual solution:

I'm solving this graph traversal problem by using depth-
first search and manually tracing through the example. Are there other approaches I should consider working through by hand to better understand the problem?

7.4.3. Identifying Edge Cases

AI can help identify edge cases to trace manually:

I've traced through the standard case for this binary search algorithm. What edge cases should I work through by hand to ensure I understand all aspects of the algorithm?

86

7.5. Practical Exercise: Working By Hand

7.5. Practical Exercise: Working By Hand

Let’s apply Step 3 to our ongoing example problem:

Write a function to find the longest palindromic substring in a
given string.

7.5.1. Chosen Example: “babad”

Let’s trace through the process of finding the longest palindromic sub-
string:

1. Start with the input string: “babad”
2. Examine each potential center position:

For single-character centers (odd-length palindromes): - Center at ‘b’
(index 0): - Check “b” -> palindrome of length 1 - Check “ba” -> not a
palindrome

• Center at ‘a’ (index 1):

– Check “a” -> palindrome of length 1
– Check “bab” -> palindrome of length 3
– Check “bab�” (out of bounds) -> stop

• Center at ‘b’ (index 2):

– Check “b” -> palindrome of length 1
– Check “aba” -> palindrome of length 3
– Check “bab�” (out of bounds) -> stop

• Center at ‘a’ (index 3):

– Check “a” -> palindrome of length 1
– Check “bad” -> not a palindrome

• Center at ‘d’ (index 4):

87

7. Work by Hand (Step 3)

– Check “d” -> palindrome of length 1
– Check “ad” -> not a palindrome

For two-character centers (even-length palindromes): - Between ‘b’ and ‘a’
(indices 0-1): - Check “ba” -> not a palindrome

• Between ‘a’ and ‘b’ (indices 1-2):

– Check “ab” -> not a palindrome

• Between ‘b’ and ‘a’ (indices 2-3):

– Check “ba” -> not a palindrome

• Between ‘a’ and ‘d’ (indices 3-4):

– Check “ad” -> not a palindrome

From our manual trace, we can see that the longest palindromic substrings
are “bab” and “aba”, both of length 3.

7.5.2. Edge Case: Empty String

Input: “ ” Result: “ ” (empty string)

7.5.3. Edge Case: Single Character

Input: “a” Result: “a” (the character itself)

7.5.4. Edge Case: All Same Characters

Input: “aaaaa” Result: “aaaaa” (the entire string)

88

7.5. Practical Exercise: Working By Hand

7.5.5. Edge Case: No Palindromes Longer Than 1

Input: “abcd” Result: “a” (any single character)

7.5.6. Validating Our Approach with AI

Human prompt:

I've manually traced through finding the longest palindromic substring in "babad" by checking each possible center position and expanding outward. I found that "bab" and "aba" are both valid answers with length 3.

I also tried these edge cases:
- Empty string -> ""
- Single character "a" -> "a"
- All same characters "aaaaa" -> "aaaaa"
- No palindromes longer than 1 "abcd" -> "a" (or any single character)

Does my manual approach seem correct? Am I missing any important edge cases?

AI response: > Your manual approach of checking each possible center
position and expanding outward is exactly right! This is the standard
approach for solving this problem efficiently. > > Your edge cases are also
well-chosen and cover the important scenarios: > > - Empty string > -
Single character > - All same characters (a special case where the entire
string is a palindrome) > - No palindromes longer than 1 character > >
One additional edge case you might consider: > > - Input with even-length
palindromes only, like “abba” where the palindrome doesn’t have a single
center character > > But your approach already handles this by checking
both single character centers and between-character centers, so it’s just a
matter of verifying with an example. > > Your manual working shows a
strong understanding of the problem and solution approach!

89

7. Work by Hand (Step 3)

7.6. Insights from Working By Hand

By manually tracing through examples, we’ve gained several key insights:

1. We need to check both odd-length palindromes (single character
center) and even-length palindromes (between character center)

2. The process of expanding outward from a center is the same for both
cases

3. We need to keep track of the longest palindrome found so far
4. Boundary checking is important to avoid going out of bounds
5. For strings with multiple palindromes of the same length, returning

any one is acceptable

These insights will guide our pseudocode development in the next step.

7.7. Key Takeaways

• Working problems by hand builds a deep understanding that can’t
be replicated by simply using AI to generate solutions

• Manual tracing helps identify edge cases and test assumptions
• Different visualization techniques (tables, diagrams, flow traces) suit

different types of problems
• AI can complement manual work by verifying solutions and suggesting

edge cases
• The insights gained from manual examples inform all subsequent

steps of the methodology

7.8. Moving Forward

With a solid understanding of the problem gained through manual examples,
we’re now ready to develop a structured approach to the solution. In the

90

7.8. Moving Forward

next chapter, we’ll explore Step 4: Writing pseudocode to outline our
solution strategy.

91

8. Pseudocode (Step 4)

The fourth step in our methodology—writing pseudocode—bridges the
conceptual understanding developed in earlier steps to the concrete imple-
mentation that follows. Pseudocode provides a language-agnostic blueprint
for your solution, focusing on logic and algorithms rather than syntax.

8.1. Writing Effective Pseudocode

8.1.1. What Makes Good Pseudocode?

Effective pseudocode strikes a balance between abstraction and detail:

• Clear and readable - understandable by both humans and AI
• Structured - uses indentation and organization to show control flow
• Language-agnostic - avoids specific programming language syntax
• Focused on logic - emphasizes algorithmic thinking over implemen-

tation details
• Complete - addresses all requirements and edge cases
• Concise - eliminates unnecessary details

The goal is to create a plan concrete enough to guide implementation
but abstract enough to focus on the solution’s logic rather than syntactic
details.

93

8. Pseudocode (Step 4)

8.1.2. Common Pseudocode Conventions

While pseudocode isn’t standardized, these conventions enhance clarity:

8.1.2.1. Control Structures

IF condition THEN
action1

ELSE
action2

END IF

FOR each item in collection
process item

END FOR

WHILE condition
action

END WHILE

8.1.2.2. Function Definitions

FUNCTION name(parameters)
actions
RETURN value

END FUNCTION

8.1.2.3. Variable Operations

SET variable TO value
INCREMENT counter
ADD item TO collection

94

8.2. Pseudocode and LLMs: A Natural Partnership

8.1.2.4. Input/Output

READ input FROM user
DISPLAY message
WRITE data TO file

8.2. Pseudocode and LLMs: A Natural Partnership

Pseudocode plays a particularly important role when working with Large
Language Models. It serves as a bridge between natural language ambiguity
and the precision of formal programming languages, creating an ideal
medium for human-AI collaboration.

8.2.1. Why Pseudocode Works Well with LLMs

Several factors make pseudocode especially effective for LLM interactions:

1. Structural alignment with training data - LLMs have been
trained on vast amounts of programming content, including discus-
sions of algorithms that frequently use pseudocode. This training
means they have strong internal representations of pseudocode con-
ventions.

2. Reduced ambiguity - Pseudocode provides more structure than
natural language while remaining flexible, striking an ideal balance
that reduces misinterpretations.

3. Focus on logic - By emphasizing algorithmic thinking over syn-
tax, pseudocode aligns with LLMs’ strengths in reasoning about
procedures rather than producing perfect syntax.

95

8. Pseudocode (Step 4)

4. Activation of procedural knowledge - Research shows that LLMs
have absorbed procedural knowledge from their training data. Pseu-
docode effectively activates this latent knowledge by providing clear
procedural frameworks.

5. Medium of iterative refinement - Pseudocode serves as an excel-
lent medium for progressive disambiguation - the process of gradually
transforming ambiguous natural language into precise formal code
through multiple rounds of interaction.

8.2.2. Pseudocode as Disambiguation Tool

One of the most significant challenges when working with LLMs is the
inherent ambiguity of natural language. Pseudocode helps address this
challenge by:

• Providing clear structure that reduces misinterpretation
• Creating a shared vocabulary for discussing algorithms
• Enabling precise references to specific components or steps
• Facilitating incremental refinement toward formal code

As Dijkstra noted decades ago, “The virtue of formal texts is that their
manipulations, in order to be legitimate, need to satisfy only a few simple
rules; they are… an amazingly effective tool for ruling out all sorts of
nonsense that, when we use our native tongues, are almost impossible to
avoid.” While pseudocode isn’t fully formal, it moves us considerably in
that direction.

8.2.3. SudoLang: Pseudocode Optimized for LLMs

SudoLang represents an evolution of pseudocode specifically designed for
LLM interaction. Created by Eric Elliott, it provides a structured syntax

96

8.2. Pseudocode and LLMs: A Natural Partnership

that bridges the gap between natural language and formal programming
languages, optimized for human-AI collaboration.

Key features of SudoLang include:

• Simplified syntax that both humans and AI can easily understand
• Declarative approach that focuses on what should happen rather

than how
• Named parameters that improve clarity and reduce ambiguity
• Native support for modern programming patterns like func-

tional programming and async operations
• Unambiguous structure that reduces misinterpretation by AI

models

A simple example in SudoLang:

function sortUsersByAge({ users }) {
return users.sort(by: user => user.age)

}

When working with AI assistants on complex programming tasks, Su-
doLang can help create more precise, intentional prompts that result in
higher-quality code generation. It’s especially valuable when you need to
communicate algorithmic intent clearly without getting lost in language-
specific syntax details.

8.2.4. LLMs as Pseudocode Interpreters

An intriguing aspect of LLMs is their ability to act as “interpreters” for
pseudocode. Unlike traditional pseudocode that serves purely as documen-
tation, LLMs can actually process and “execute” pseudocode to generate
outputs, transforming it from a planning tool into a functional programming
interface.

This capability enables new workflows where:

97

8. Pseudocode (Step 4)

1. Humans write pseudocode expressing algorithmic intent
2. LLMs interpret this pseudocode and generate working implementa-

tions
3. Humans review, refine, and integrate these implementations

This process leverages the complementary strengths of both humans and
AI: human strategic thinking and algorithm design paired with AI’s ability
to handle implementation details across various programming languages.

For complex algorithmic challenges, this partnership often produces better
results than either pure natural language prompting (too ambiguous) or
direct code requests (too focused on immediate implementation rather than
understanding).

8.2.5. Pseudocode vs. Comments

Pseudocode differs from code comments in several important ways:

Pseudocode Comments

Written before implementation Added during/after implementation
Focuses on overall approach Explains specific code segments
Language-independent Tied to specific code
Comprehensive overview Targeted explanations
Planning tool Documentation tool

The best implementation often involves transforming pseudocode into
commented code, preserving the planning insights in the final implementa-
tion.

98

8.3. AI-Assisted Algorithm Design

8.3. AI-Assisted Algorithm Design

AI assistants can be valuable partners in developing pseudocode, offering
different approaches and identifying potential issues.

8.3.1. Generating Initial Pseudocode

AI can help draft initial pseudocode based on your problem statement:

Human prompt:

Based on my manual approach to finding the longest palindromic substring, could you help me develop pseudocode for an algorithm that:
1. Checks each position in the string as a potential palindrome center
2. Handles both odd and even length palindromes
3. Tracks the longest palindrome found

AI response: > Here’s pseudocode for finding the longest palindromic sub-
string: > > > FUNCTION findLongestPalindromicSubstring(string)
> IF string is empty THEN > RETURN empty string >
END IF > > SET startIndex = 0 > SET maxLength
= 1 > > FUNCTION expandAroundCenter(left, right)
> WHILE left >= 0 AND right < length of string AND
string[left] = string[right] > currentLength =
right - left + 1 > IF currentLength > maxLength
THEN > SET maxLength = currentLength >
SET startIndex = left > END IF > DECREMENT
left > INCREMENT right > END WHILE >
END FUNCTION > > FOR i = 0 TO length of string - 1 >
// Check odd length palindromes (single character center)
> expandAroundCenter(i, i) > > //
Check even length palindromes (between character center)
> expandAroundCenter(i, i + 1) > END FOR > >

99

8. Pseudocode (Step 4)

RETURN substring of string from startIndex to startIndex +
maxLength - 1 > END FUNCTION > > > This pseudocode implements the
approach we discussed, checking both odd and even length palindromes by
expanding around potential centers and tracking the longest palindrome
found.

8.3.2. Refining Pseudocode

Once you have initial pseudocode, use AI to help refine it by asking targeted
questions:

Human prompt:

This pseudocode looks good. Two questions:

1. Should we check for even-length palindromes between the last character and out of bounds?
2. Is there any way to optimize this further, perhaps by avoiding redundant checks?

AI response: > Great questions! Let me address both: > > 1. Regarding
even-length palindromes at the end of the string: >
> In the current pseudocode, we check for even-length palindromes
between positions i and i+1 for i ranging from 0 to length-1. When i is
length-1 (the last character), we’d check between the last character and
one past the end of the string, which would immediately fail the boundary
check in expandAroundCenter(). >
> This isn’t harmful, but we could optimize by changing the loop for
even-length palindromes to stop at length-2: >
> > // Odd length palindromes > FOR i = 0 TO length of
string - 1 > expandAroundCenter(i, i) > END FOR >
> // Even length palindromes > FOR i = 0 TO length of
string - 2 > expandAroundCenter(i, i + 1) > END FOR
> >
> Or keep the single loop but add a condition: >

100

8.3. AI-Assisted Algorithm Design

> > FOR i = 0 TO length of string - 1 > // Odd
length > expandAroundCenter(i, i) > > //
Even length (only if not at last character) > IF i <
length of string - 1 THEN > expandAroundCenter(i,
i + 1) > END IF > END FOR > > > 2. Regarding further
optimization: >
> Yes, there are a few potential optimizations: >
> a) Early termination: If we find a palindrome of length N, then we only
need to check centers that could potentially produce longer palindromes.
If we’re at position i and there are fewer than N/2 characters on either
side, we can skip that center. >
> b) Avoid redundant expansions: If we know a substring isn’t a
palindrome, any larger substring containing it also isn’t a palindrome. >
> c) For very long strings, Manacher’s algorithm gives a linear-time
solution instead of quadratic, but it’s significantly more complex. >
> Here’s an optimization for the early termination case: >
> > FOR i = 0 TO length of string - 1 > // Only
check centers with enough characters on both sides to beat
maxLength > remainingChars = MIN(i, length of string
- i - 1) > IF remainingChars * 2 + 1 > maxLength THEN
> // Odd length > expandAroundCenter(i,
i) > END IF > > IF i < length of string
- 1 AND MIN(i, length of string - i - 2) * 2 + 2 > maxLength
THEN > // Even length > expandAroundCenter(i,
i + 1) > END IF > END FOR > >
> However, these optimizations add complexity. For most practical cases,
the original pseudocode is clear and efficient enough.

8.3.3. Comparing Alternative Approaches

AI can help explore different algorithmic approaches to the same problem:

Human prompt:

101

8. Pseudocode (Step 4)

Are there fundamentally different approaches to finding the longest palindromic substring besides the center-
expansion method we've been discussing?

AI response: > Yes, there are several fundamentally different approaches
to finding the longest palindromic substring: > > 1. Dynamic
Programming Approach >
> Instead of expanding from centers, we can use a bottom-up DP approach:
>
> > FUNCTION findLongestPalindrome_DP(string) > SET
n = length of string > > // Create n x n table
where dp[i][j] = true if substring from i to j is palindrome
> CREATE boolean table dp[n][n] > > //
All substrings of length 1 are palindromes > FOR i
= 0 TO n-1 > dp[i][i] = true > END FOR
> > SET start = 0 > SET maxLength
= 1 > > // Check substrings of length 2 >
FOR i = 0 TO n-2 > IF string[i] = string[i+1] THEN
> dp[i][i+1] = true > start
= i > maxLength = 2 > END IF >
END FOR > > // Check substrings of length
3 or more > FOR length = 3 TO n > FOR
i = 0 TO n-length > j = i + length - 1 >
> IF string[i] = string[j] AND dp[i+1][j-1] =
true THEN > dp[i][j] = true > >
IF length > maxLength THEN > start = i
> maxLength = length > END
IF > END IF > END FOR > END
FOR > > RETURN substring of string from start
to start + maxLength - 1 > END FUNCTION > >
> This uses O(n²) space and time, similar to the center expansion approach
in time complexity but using more memory. > > 2. Manacher’s
Algorithm >
> This is an optimized approach that runs in O(n) time: >

102

8.3. AI-Assisted Algorithm Design

> > FUNCTION manachers_algorithm(string) > //
Transform string to handle even-length palindromes > //
For example, "babad" becomes "^#b#a#b#a#d#$" > SET
transformed = preprocessString(string) > > SET
n = length of transformed > CREATE array p[n] // p[i]
= radius of palindrome centered at i > > SET
center = 0 > SET right_boundary = 0 > >
FOR i = 1 TO n-2 > // Mirror of current position >
SET mirror = 2 * center - i > > // If
within right boundary, use mirror value > IF i <
right_boundary THEN > p[i] = MIN(right_boundary
- i, p[mirror]) > ELSE > p[i] = 0 >
END IF > > // Expand palindrome
centered at i > WHILE transformed[i + 1 + p[i]]
= transformed[i - 1 - p[i]] > INCREMENT p[i] >
END WHILE > > // Update center if this
palindrome extends beyond right boundary > IF i
+ p[i] > right_boundary THEN > center = i >
right_boundary = i + p[i] > END IF > END
FOR > > // Find the maximum element in p
> SET max_len = 0 > SET center_index = 0 >
> FOR i = 1 TO n-2 > IF p[i] > max_len THEN
> max_len = p[i] > center_index
= i > END IF > END FOR > > //
Extract the longest palindromic substring from original
string > SET start = (center_index - max_len) / 2 >
RETURN substring of string from start to start + max_len >
END FUNCTION > >
> This algorithm is significantly more complex but offers linear time
complexity. > > 3. Suffix Tree Approach >
> Building a generalized suffix tree for the string and its reverse, then
finding the longest common substring. >
> This is even more complex to implement but can be useful when solving
multiple related string problems. > > The center expansion approach

103

8. Pseudocode (Step 4)

remains the most intuitive and offers a good balance of simplicity and
efficiency for most practical applications.

8.4. From Pseudocode to Implementation Plan

Pseudocode should eventually lead to a concrete implementation plan,
outlining how to translate the logical structure into actual code.

8.4.1. Adding Implementation Details

Once the core logic is established in pseudocode, gradually add
implementation-specific details:

// Initial pseudocode
FOR each character in string

check for palindromes centered at this character
END FOR

// Enhanced with implementation details
FOR i = 0 TO length - 1

// For odd-length palindromes
left = i, right = i
WHILE left >= 0 AND right < length AND string[left] == string[right]

update longest palindrome if needed
left--, right++

END WHILE

// For even-length palindromes
left = i, right = i + 1
IF right < length THEN

WHILE left >= 0 AND right < length AND string[left] == string[right]

104

8.4. From Pseudocode to Implementation Plan

update longest palindrome if needed
left--, right++

END WHILE
END IF

END FOR

8.4.2. Creating Function Signatures

Based on the pseudocode, define the function signatures that will be
needed:

def find_longest_palindrome(s: str) -> str:
"""
Find the longest palindromic substring in the given string.

Args:
s: Input string to search

Returns:
The longest palindromic substring

"""
pass

def expand_around_center(s: str, left: int, right: int) -> tuple[int, int]:
"""
Expand around a potential palindrome center and return the bounds
of the longest palindrome found.

Args:
s: Input string
left: Starting left position
right: Starting right position

105

8. Pseudocode (Step 4)

Returns:
Tuple of (start_index, length) of palindrome

"""
pass

8.4.3. Planning Test Coverage

Use pseudocode to identify the test cases needed for comprehensive cover-
age:

TEST CASES:
1. Empty string -> should return empty string
2. Single character -> should return that character
3. Two identical characters -> should return both characters
4. No palindromes longer than 1 -> should return first character
5. Odd-length palindrome -> should find correct substring
6. Even-length palindrome -> should find correct substring
7. Multiple palindromes of same length -> should return any of them
8. Entire string is a palindrome -> should return entire string

8.5. Comparing Alternative Approaches

When faced with multiple valid algorithmic approaches, pseudocode pro-
vides a concise way to compare them before committing to implementa-
tion.

8.5.1. Evaluation Criteria

Evaluate pseudocode approaches based on:

106

8.5. Comparing Alternative Approaches

1. Time complexity - theoretical performance as input size grows
2. Space complexity - memory requirements
3. Implementation complexity - how difficult it will be to code and

debug
4. Readability and maintainability - how easily others can under-

stand it
5. Edge case handling - robustness against unusual inputs
6. Scalability - ability to handle very large inputs or to be extended

8.5.2. Structured Comparison

Create a comparison table to evaluate different approaches:

Ap-
proach

Time
Complex-
ity

Space
Complex-
ity

Implementation
Complexity Strengths

Weak-
nesses

Center
Ex-
pan-
sion

O(n²) O(1) Low Intu-
itive,
easy to
imple-
ment

Less
efficient
for very
large
strings

Dy-
namic
Pro-
gram-
ming

O(n²) O(n²) Medium Sys-
tem-
atic,
han-
dles all
cases
uni-
formly

Higher
memory
usage

107

8. Pseudocode (Step 4)

Ap-
proach

Time
Complex-
ity

Space
Complex-
ity

Implementation
Complexity Strengths

Weak-
nesses

Man-
acher’s
Algo-
rithm

O(n) O(n) High Opti-
mal
time
com-
plexity

Com-
plex to
imple-
ment
and
debug

8.5.3. Making an Informed Decision

Consider the context of your application:

• For educational purposes or moderate string lengths, the center
expansion approach is ideal due to its simplicity and efficiency

• For production systems with very large strings, Manacher’s algorithm
might be worth the implementation complexity

• If memory is a significant constraint, avoid the DP approach
• If you need to process many strings repeatedly, the upfront cost of

implementing Manacher’s algorithm may be justified

8.6. Key Takeaways

• Pseudocode provides a language-agnostic blueprint focusing on logic
rather than syntax

• Good pseudocode strikes a balance between abstraction and detail
• AI can help generate, refine, and compare different pseudocode ap-

proaches
• Gradually add implementation-specific details as you transition from

pseudocode to code

108

8.7. Moving Forward

• Use pseudocode to compare alternative approaches before committing
to implementation

• Pseudocode forms the basis for function signatures and test plans

8.7. Moving Forward

With well-developed pseudocode in hand, we’re now ready to move to
Step 5: Converting our logical blueprint into working code. In the next
chapter, we’ll explore strategies for implementing our pseudocode efficiently,
leveraging AI assistance while maintaining human understanding and
control.

109

9. Convert to Code (Step 5)

The fifth step of our methodology—converting pseudocode to actual code—
is where your solution takes executable form. This is often the step where
AI assistance becomes most valuable, but it’s also where maintaining
human understanding is most critical.

9.1. Strategies for Code Implementation

9.1.1. From Pseudocode to Code: A Systematic Approach

Converting pseudocode to code should be a methodical process:

1. Start with structure - Convert the overall organization and func-
tion definitions

2. Fill in the logic - Implement the core algorithms and control flow
3. Add error handling - Incorporate validation and exception handling
4. Optimize - Refine the implementation for efficiency and readability
5. Document - Add appropriate comments and documentation

This incremental approach ensures that you maintain control of the imple-
mentation while still leveraging AI for efficiency.

111

9. Convert to Code (Step 5)

9.1.2. Incremental Implementation

Rather than converting all pseudocode at once, implement in manageable
chunks:

// Pseudocode
FUNCTION findLongestPalindrome(string)

FUNCTION expandAroundCenter(left, right)
// Expansion logic

END FUNCTION

// Main logic using expandAroundCenter
END FUNCTION

Implement one function at a time:

def find_longest_palindrome(s):
Implementation will go here
pass

def expand_around_center(s, left, right):
First, implement this helper function
while left >= 0 and right < len(s) and s[left] == s[right]:

left -= 1
right += 1

Return the palindrome bounds (start, length)
return left + 1, right - left - 1

Then integrate the pieces:

112

9.1. Strategies for Code Implementation

def find_longest_palindrome(s):
if not s:

return ""

start = 0
max_length = 1

for i in range(len(s)):
Now use the helper function for both odd and even cases
odd_start, odd_length = expand_around_center(s, i, i)
even_start, even_length = expand_around_center(s, i, i + 1)

Update if a longer palindrome is found
if odd_length > max_length:

start = odd_start
max_length = odd_length

if even_length > max_length:
start = even_start
max_length = even_length

return s[start:start + max_length]

9.1.3. Language-Specific Considerations

Different programming languages offer various idioms and features that
can improve your implementation:

113

9. Convert to Code (Step 5)

9.1.3.1. Python

Use list comprehensions for concise data transformation
lengths = [expand_around_center(s, i, i)[1] for i in range(len(s))]

Leverage built-in functions
max_length = max(lengths)

Use tuple unpacking for multiple return values
start, length = expand_around_center(s, i, i)

9.1.3.2. JavaScript

// Use destructuring for multiple return values
const [start, length] = expandAroundCenter(s, i, i);

// Use map for transformations
const lengths = Array.from({length: s.length}, (_, i) =>

expandAroundCenter(s, i, i)[1]
);

// Use spread operator for finding maximum
const maxLength = Math.max(...lengths);

9.1.3.3. Java

// Use records (Java 16+) for returning multiple values
record PalindromeResult(int start, int length) {}

114

9.2. Working with AI Code Suggestions

// Use streams for transformations
int maxLength = IntStream.range(0, s.length())

.map(i -> expandAroundCenter(s, i, i).length())

.max()

.orElse(0);

9.2. Working with AI Code Suggestions

AI assistants excel at generating code, but using them effectively requires
a thoughtful approach.

9.2.1. Prompting for Implementation

When asking AI to implement code, provide context from previous steps:

Human prompt:

I'd like to implement our longest palindromic substring algorithm in Python based on the pseudocode we developed. Here's a reminder of our approach:

1. We'll check each character position as a potential center for a palindrome
2. For each center, we'll expand outward as long as we have matching characters
3. We'll check both odd-length palindromes (single character center) and even-
length palindromes (between character center)
4. We'll keep track of the longest palindrome found

Could you provide a clean Python implementation with good variable names and documentation?

AI response: > Here’s a clean implementation of the longest
palindromic substring algorithm in Python: > > python > def
longest_palindromic_substring(s): > """ > Find the

115

9. Convert to Code (Step 5)

longest palindromic substring in a given string. > >
Args: > s: Input string > > Returns:
> The longest palindromic substring within the
input string > """ > if not s: > return "" >
> start = 0 # Starting index of longest palindrome >
max_length = 1 # Length of longest palindrome > >
def expand_around_center(left, right): > """ >
Expand around a potential palindrome center and return the
bounds. > > Args: > left: Left
index of the potential palindrome center > right:
Right index of the potential palindrome center > >
Returns: > Tuple of (start_index, length) of the
palindrome > """ > # Expand as long as we
stay in bounds and have matching characters > while
left >= 0 and right < len(s) and s[left] == s[right]: >
current_length = right - left + 1 > > #
Update longest palindrome if current one is longer > if
current_length > max_length: > nonlocal
start, max_length > start = left > max_length
= current_length > > # Expand
outward > left -= 1 > right += 1 >
> # Check every possible center position > for i in
range(len(s)): > # Odd length palindromes (single
character center) > expand_around_center(i, i) >
> # Even length palindromes (between character
center) > if i < len(s) - 1: > expand_around_center(i,
i + 1) > > # Extract and return the longest palindromic
substring > return s[start:start + max_length] > > > This
implementation follows the center expansion approach we discussed.
It has: > > 1. Clear variable names (start, max_length, etc.) > 2.
Comprehensive documentation with docstrings > 3. A helper function to
handle the expansion logic > 4. Proper handling of both odd and even
length palindromes > 5. Efficient tracking of the longest palindrome found
> > The time complexity is O(n²) where n is the length of the string, and

116

9.2. Working with AI Code Suggestions

the space complexity is O(1) since we only use a constant amount of extra
space.

9.2.2. Evaluating AI-Generated Code

Always critically evaluate code generated by AI:

1. Correctness - Does it implement the algorithm as intended?
2. Edge cases - Does it handle all the edge cases we identified?
3. Performance - Is it reasonably efficient?
4. Readability - Is it clearly written and well-documented?
5. Idiomaticity - Does it follow language-specific best practices?

If there are issues, provide specific feedback:

Human prompt:

This implementation looks generally good, but I noticed two potential issues:

1. The helper function updates the global variables directly. It might be cleaner to have it return the palindrome bounds instead, making the function more reusable.

2. We don't need to check for even-length palindromes when i is the last character since there's no character after it.

Could you address these issues in a revised implementation?

AI response: > You’ve made excellent observations. Here’s a
revised implementation that addresses both issues: > > python >
def longest_palindromic_substring(s): > """ > Find
the longest palindromic substring in a given string. > >
Args: > s: Input string > > Returns:
> The longest palindromic substring within the
input string > """ > if not s: > return "" >
> start = 0 # Starting index of longest palindrome >

117

9. Convert to Code (Step 5)

max_length = 1 # Length of longest palindrome > >
def expand_around_center(left, right): > """ >
Expand around a potential palindrome center and return the
bounds. > > Args: > left: Left
index of the potential palindrome center > right:
Right index of the potential palindrome center > >
Returns: > Tuple of (start_index, length) of the
palindrome > """ > # Expand as long as we
stay in bounds and have matching characters > while
left >= 0 and right < len(s) and s[left] == s[right]: >
Expand outward > left -= 1 > right
+= 1 > > # Return palindrome bounds (start
is left+1 because left went one step too far) > #
Length is (right-1) - (left+1) + 1 = right - left - 1 >
return left + 1, right - left - 1 > > # Check
every possible center position > for i in range(len(s)):
> # Odd length palindromes (single character center)
> odd_start, odd_length = expand_around_center(i, i)
> if odd_length > max_length: > start =
odd_start > max_length = odd_length > >
Even length palindromes (between character center) >
Only check if we're not at the last character > if
i < len(s) - 1: > even_start, even_length =
expand_around_center(i, i + 1) > if even_length >
max_length: > start = even_start > max_length
= even_length > > # Extract and return the longest
palindromic substring > return s[start:start + max_length]
> > > The changes I’ve made: > > 1. Modified expand_around_center
to return the palindrome bounds instead of modifying global variables
directly. This makes the function more reusable and easier to test. > > 2.
Added an explicit check to avoid trying to form even-length palindromes
when at the last character, which would be unnecessary. > > 3. Updated
the main loop to capture the returned values from expand_around_center
and update our tracking variables only if a longer palindrome is found.

118

9.2. Working with AI Code Suggestions

> > These changes make the code more modular and eliminate the
unnecessary check, while maintaining the correct functionality.

9.2.3. Handling Unfamiliar Syntax or Libraries

When AI suggests code that uses unfamiliar syntax or libraries, ask for
explanations:

Human prompt:

In the implementation, you're returning a tuple and then unpacking it with:

odd_start, odd_length = expand_around_center(i, i)

I'm not familiar with this Python syntax. Could you explain how tuple unpacking works and why it's useful here?

AI response: > Sure! This is called “tuple unpacking” or “multiple
assignment” in Python, and it’s a very convenient feature. > > ### How
Tuple Unpacking Works > > When a function returns multiple values in
Python, they’re automatically packaged as a tuple. Tuple unpacking allows
you to assign each value in the tuple to a separate variable in a single line of
code. > > In this case, expand_around_center(i, i) returns a tuple of
two values: (start_index, length). The unpacking syntax: > > python
> odd_start, odd_length = expand_around_center(i, i) > > > is
equivalent to: > > python > result = expand_around_center(i, i)
> odd_start = result[0] > odd_length = result[1] > > > ###
Why It’s Useful Here > > Tuple unpacking is particularly useful in this
algorithm because: > > 1. Clarity: It makes it immediately clear what
values we’re getting back from the function > > 2. Conciseness: It
reduces three lines of code to one, making the code more readable > >
3. Intent: It shows that these two values are related and come from the
same operation > > This pattern is very common in Python, especially
when functions naturally produce multiple related values. It’s considered a

119

9. Convert to Code (Step 5)

Pythonic way to handle multiple return values without creating custom
classes or using more complex data structures. > > Would you like me to
show you some other common patterns for tuple unpacking in Python?

9.3. Maintaining Code Quality

AI-generated code can be a starting point, but ensuring high-quality code
remains a human responsibility.

9.3.1. Idiomatic Code

Ensure that code follows the conventions and best practices of the target
language:

Non-idiomatic Python
i = 0
while i < len(collection):

item = collection[i]
process(item)
i = i + 1

Idiomatic Python
for item in collection:

process(item)

Ask AI to make code more idiomatic:

Human prompt:

This code works, but I'd like it to be more idiomatic Python. Can you suggest any improvements?

120

9.3. Maintaining Code Quality

9.3.2. Error Handling

Ensure the code handles errors gracefully:

def longest_palindromic_substring(s):
Add input validation
if not isinstance(s, str):

raise TypeError("Input must be a string")

if not s:
return ""

Rest of implementation...

9.3.3. Performance Optimization

Look for opportunities to optimize performance without sacrificing read-
ability:

Original implementation
for i in range(len(s)):

Only check centers with potential to beat current max
if min(i, len(s) - i - 1) * 2 + 1 <= max_length:

continue # Skip this center if it can't yield a longer palindrome

Process this center...

9.3.4. Documentation and Comments

Ensure code is well-documented:

121

9. Convert to Code (Step 5)

def longest_palindromic_substring(s):
"""
Find the longest palindromic substring in a given string.

This function uses the center expansion approach, which has O(n²) time complexity
and O(1) space complexity.

Args:
s (str): The input string to process

Returns:
str: The longest palindromic substring. If multiple palindromes have the

same maximum length, returns the first one found.

Raises:
TypeError: If input is not a string

Examples:
>>> longest_palindromic_substring("babad")
"bab" # "aba" would also be a valid return value

>>> longest_palindromic_substring("cbbd")
"bb"

"""
Implementation...

9.4. Practical Exercise: Implementing Our Solution

Let’s apply Step 5 to our ongoing example of finding the longest palindromic
substring:

122

9.4. Practical Exercise: Implementing Our Solution

9.4.1. Converting the Pseudocode

Starting with our pseudocode from the previous chapter:

FUNCTION findLongestPalindromicSubstring(string)
IF string is empty THEN

RETURN empty string
END IF

SET startIndex = 0
SET maxLength = 1

FUNCTION expandAroundCenter(left, right)
WHILE left >= 0 AND right < length of string AND string[left] = string[right]

currentLength = right - left + 1
IF currentLength > maxLength THEN

SET maxLength = currentLength
SET startIndex = left

END IF
DECREMENT left
INCREMENT right

END WHILE
END FUNCTION

FOR i = 0 TO length of string - 1
// Check odd length palindromes
expandAroundCenter(i, i)

// Check even length palindromes
IF i < length of string - 1 THEN

expandAroundCenter(i, i + 1)
END IF

END FOR

123

9. Convert to Code (Step 5)

RETURN substring of string from startIndex to startIndex + maxLength - 1
END FUNCTION

We’ll implement this in Python, incorporating the improvements we’ve
discussed.

9.4.2. Final Implementation

def longest_palindromic_substring(s):
"""
Find the longest palindromic substring in a given string.

Args:
s (str): The input string to process

Returns:
str: The longest palindromic substring

Examples:
>>> longest_palindromic_substring("babad")
"bab" # Note: "aba" would also be a valid return value
>>> longest_palindromic_substring("cbbd")
"bb"

"""
Handle empty input
if not s:

return ""

start = 0
max_length = 1

124

9.4. Practical Exercise: Implementing Our Solution

Helper function to expand around a center
def expand_around_center(left, right):

"""
Expand around a potential palindrome center and find the longest palindrome.

Args:
left (int): Left position of the center
right (int): Right position of the center

Returns:
tuple: (start_index, length) of the palindrome

"""
Expand as long as characters match and we're in bounds
while left >= 0 and right < len(s) and s[left] == s[right]:

left -= 1
right += 1

Return palindrome bounds
left+1 because we went one position too far left
right-left-1 calculates the length
return left + 1, right - left - 1

Check each potential center
for i in range(len(s)):

Skip centers that can't yield longer palindromes
remaining_chars = min(i, len(s) - i - 1)
if remaining_chars * 2 + 1 <= max_length:

continue

Check odd-length palindrome
odd_start, odd_length = expand_around_center(i, i)
if odd_length > max_length:

start = odd_start

125

9. Convert to Code (Step 5)

max_length = odd_length

Check even-length palindrome
if i < len(s) - 1:

even_start, even_length = expand_around_center(i, i + 1)
if even_length > max_length:

start = even_start
max_length = even_length

Return the longest palindromic substring
return s[start:start + max_length]

9.4.3. Testing the Implementation

After implementing our solution, we should test it with the cases we
identified earlier:

Test with various inputs
test_cases = [

"", # Empty string
"a", # Single character
"aa", # Two identical characters
"abc", # No palindromes longer than 1
"babad", # Odd-length palindrome
"cbbd", # Even-length palindrome
"racecar", # Entire string is a palindrome
"aabbaa" # Multiple palindromes

]

for test in test_cases:
result = longest_palindromic_substring(test)
print(f"Input: {test}, Output: {result}")

126

9.5. Key Takeaways

9.5. Key Takeaways

• Converting pseudocode to code should be an incremental, systematic
process

• Take advantage of language-specific features and idioms for cleaner
implementations

• When using AI-generated code, always evaluate it critically for cor-
rectness, efficiency, and readability

• Focus on writing idiomatic code with proper error handling and
documentation

• Use AI to explain unfamiliar syntax or patterns rather than just
accepting them

• Test your implementation against a variety of inputs, especially edge
cases

9.6. Moving Forward

With a working implementation in hand, we now need to ensure it functions
correctly under all conditions. In the next chapter, we’ll explore Step 6:
Testing with a variety of data, where we’ll verify our solution’s correctness
and robustness.

127

10. Test with Data (Step 6)

The final step in our methodology—testing with a variety of data—is where
we verify that our solution works correctly in all scenarios. This critical
step ensures that our implementation meets the requirements and handles
edge cases properly.

10.1. Comprehensive Testing Strategies

10.1.1. The Importance of Thorough Testing

Testing isn’t just about confirming that your code works—it’s about dis-
covering where and how it might fail. Thorough testing:

1. Validates correctness - Ensures the solution produces the expected
results

2. Reveals edge case issues - Identifies problems with unusual inputs
3. Provides confidence - Gives you assurance that the solution is

robust
4. Documents behavior - Shows how the code responds to different

inputs
5. Prevents regressions - Helps maintain correctness as code evolves

Even with AI assistance in implementation, testing remains primarily
a human responsibility. The most effective developers use a structured
approach to testing rather than ad hoc verification.

129

10. Test with Data (Step 6)

10.1.2. Types of Test Cases

A comprehensive testing strategy includes several types of test cases:

10.1.2.1. Functional Tests

These verify that the code produces the correct output for standard in-
puts:

Basic functionality tests
assert longest_palindromic_substring("babad") in ["bab", "aba"]
assert longest_palindromic_substring("cbbd") == "bb"

10.1.2.2. Edge Case Tests

These check how the code handles boundary conditions and unusual in-
puts:

Edge case tests
assert longest_palindromic_substring("") == "" # Empty string
assert longest_palindromic_substring("a") == "a" # Single character
assert longest_palindromic_substring("aa") == "aa" # Two identical characters

10.1.2.3. Stress Tests

These evaluate behavior with large or complex inputs:

Stress test
long_input = "a" * 1000 + "b" + "a" * 1000 # Long palindrome
assert len(longest_palindromic_substring(long_input)) == 2001

130

10.2. Edge Case Identification

random_input = "".join(random.choice("abcdef") for _ in range(1000))
No assertion, just checking it doesn't crash or timeout
result = longest_palindromic_substring(random_input)

10.1.2.4. Performance Tests

These measure execution time and resource usage:

Performance test
import time

start_time = time.time()
longest_palindromic_substring(long_input)
end_time = time.time()

assert end_time - start_time < 1.0 # Should complete in under 1 second

10.1.2.5. Regression Tests

These ensure that fixes for reported issues don’t break existing functional-
ity:

Regression test for a specific reported issue
Issue: Function was returning incorrect results for strings with repeated characters
assert longest_palindromic_substring("aabaa") == "aabaa"

10.2. Edge Case Identification

Identifying all relevant edge cases is a crucial aspect of thorough testing.

131

10. Test with Data (Step 6)

10.2.1. Common Edge Case Categories

Different problems have different edge cases, but these categories are
frequently relevant:

10.2.1.1. Input Size Edge Cases

• Empty inputs (e.g., empty strings, empty arrays)
• Minimal inputs (e.g., single-character strings, single-element arrays)
• Very large inputs (testing performance and boundary limits)

10.2.1.2. Value Edge Cases

• Zero values
• Negative values
• Extremely large or small values
• Special values (e.g., NaN, infinity in floating-point operations)

10.2.1.3. Format Edge Cases

• Valid but unusual formats
• Malformed inputs
• Mixed case or special characters in strings
• Localization issues (e.g., different decimal separators)

10.2.1.4. Boundary Edge Cases

• First/last elements of collections
• Values at the exact boundary of allowed ranges
• Off-by-one scenarios

132

10.2. Edge Case Identification

10.2.1.5. Algorithm-Specific Edge Cases

For our palindrome example: - No palindromes longer than 1 character -
Entire string is a palindrome - Multiple palindromes of the same maximum
length - Palindromes at the start or end of the string - Even vs. odd-length
palindromes

10.2.2. Using AI to Identify Edge Cases

AI assistants can help identify edge cases you might not have considered:

Human prompt:

I've implemented a function to find the longest palindromic substring in a string. What edge cases should I test to ensure it works correctly in all scenarios?

AI response: > Here’s a comprehensive list of edge cases you should test
for your longest palindromic substring function: > > ### Basic Edge
Cases > > 1. Empty string - Should return empty string > 2. Single
character - Should return that character > 3. Two identical characters
- Should return both characters > 4. Two different characters - Should
return the first character > > ### Palindrome Pattern Edge Cases > >
5. No palindromes longer than 1 character - “abc” should return
“a” (or “b” or “c”) > 6. Odd-length palindromes only - “aba” should
return “aba” > 7. Even-length palindromes only - “abba” should
return “abba” > 8. Mix of odd and even palindromes - “abbac”
should return “abba” > 9. Palindrome at the beginning - “abbax”
should return “abba” > 10. Palindrome at the end - “xabba” should
return “abba” > 11. Palindrome in the middle - “xabbay” should
return “abba” > 12. Entire string is a palindrome - “racecar” should
return “racecar” > > ### Multiple Palindromes Edge Cases > > 13.
Multiple palindromes of different lengths - “aaaabcbaaaaa” should
return “aaaaa” > 14. Multiple palindromes of same maximum
length - “aabaa” and “baab” in “aabaabaab” (should return either) > 15.

133

10. Test with Data (Step 6)

Overlapping palindromes - “aaaa” has multiple overlapping palindromes
> > ### Character Edge Cases > > 16. Case sensitivity - “Madam”
is not a palindrome if case-sensitive > 17. Special characters - “a#a”
should return “a#a” > 18. Numbers and mixed content - “12321” or
“a123a” > 19. Unicode characters - Test with non-ASCII characters
like “��” > > ### Performance Edge Cases > > 20. Very long strings
- Test with strings of thousands of characters > 21. Long palindrome
within long string - e.g., 1000 ‘a’s + ’b’ + 1000 ’a’s > 22. Repeated
characters - “aaaaaaaaaa” (helps test for optimization issues) > > A
well-tested function should handle all these cases correctly and efficiently.

10.3. AI-Assisted Test Generation

AI can be particularly helpful in generating both test cases and test code.

10.3.1. Generating Test Cases

Ask AI to generate diverse test inputs:

Human prompt:

Could you generate 10 diverse test cases for the longest palindromic substring function? For each test case, provide the input string and the expected output.

AI response: > Here are 10 diverse test cases for the longest palindromic
substring function: > > | Test Case | Input String | Expected Output |
Description | > |———–|————-|—————-|————-| > | 1 | “ ” | “ ” |
Empty string | > | 2 | “a” | “a” | Single character | > | 3 | “abcd” | “a” | No
palindromes longer than 1 (any single character is valid) | > | 4 | “babad”
| “bab” or “aba” | Multiple valid answers of same length | > | 5 | “cbbd” |
“bb” | Even-length palindrome | > | 6 | “racecar” | “racecar” | Entire string
is a palindrome | > | 7 | “aacabdkacaa” | “aca” | Multiple palindromes,

134

10.3. AI-Assisted Test Generation

should find longest | > | 8 | “aaaaa” | “aaaaa” | Repeated characters | > | 9
| “civilservice” | “civic” | Palindrome at beginning | > | 10 | “abcdeedcba”
| “abcdeedcba” | Even-length palindrome (entire string) | > > These
test cases cover empty strings, single characters, no long palindromes,
multiple valid answers, even and odd-length palindromes, whole-string
palindromes, multiple palindromes of different lengths, repeated characters,
and palindromes at different positions in the string.

10.3.2. Generating Test Code

AI can also help generate the actual test code:

Human prompt:

Could you create a Python unit test class using the unittest framework for testing the longest_palindromic_substring function with the test cases you suggested?

AI response: > Here’s a comprehensive unit test class using
Python’s unittest framework to test the longest palindromic sub-
string function with the test cases I suggested: > > python > import
unittest > > # Import your function > from palindrome import
longest_palindromic_substring > > class TestLongestPalindromicSubstring(unittest.TestCase):
> > def test_empty_string(self): > """Test
with an empty string.""" > self.assertEqual(longest_palindromic_substring(""),
"") > > def test_single_character(self): > """Test
with a single character.""" > self.assertEqual(longest_palindromic_substring("a"),
"a") > > def test_no_long_palindromes(self): >
"""Test with a string that has no palindromes longer than 1
character.""" > result = longest_palindromic_substring("abcd")
> # Any single character is a valid answer > self.assertTrue(result
in ["a", "b", "c", "d"]) > self.assertEqual(len(result),
1) > > def test_multiple_valid_answers(self): >
"""Test with a string that has multiple valid answers of the
same length.""" > result = longest_palindromic_substring("babad")

135

10. Test with Data (Step 6)

> self.assertTrue(result in ["bab", "aba"]) > self.assertEqual(len(result),
3) > > def test_even_length_palindrome(self):
> """Test with a string containing an even-length
palindrome.""" > self.assertEqual(longest_palindromic_substring("cbbd"),
"bb") > > def test_entire_string_is_palindrome(self):
> """Test with a string that is entirely a palindrome."""
> self.assertEqual(longest_palindromic_substring("racecar"),
"racecar") > > def test_multiple_palindromes(self):
> """Test with a string containing multiple palindromes
of different lengths.""" > self.assertEqual(longest_palindromic_substring("aacabdkacaa"),
"aca") > > def test_repeated_characters(self):
> """Test with a string of repeated characters.""" >
self.assertEqual(longest_palindromic_substring("aaaaa"),
"aaaaa") > > def test_palindrome_at_beginning(self):
> """Test with a palindrome at the beginning of the
string.""" > self.assertEqual(longest_palindromic_substring("civilservice"),
"civic") > > def test_even_length_entire_string(self):
> """Test with an even-length palindrome that is the
entire string.""" > self.assertEqual(longest_palindromic_substring("abcdeedcba"),
"abcdeedcba") > > def test_performance_with_long_string(self):
> """Test performance with a very long string containing
a long palindrome.""" > long_input = "a" * 1000 + "b"
+ "a" * 1000 > result = longest_palindromic_substring(long_input)
> self.assertEqual(len(result), 2001) > self.assertEqual(result,
long_input) > > if __name__ == '__main__': > unittest.main()
> > > This test class includes: > > 1. Tests for all the cases I men-
tioned earlier > 2. Clear test method names that describe what’s
being tested > 3. Docstrings explaining each test > 4. Appropriate
assertions for each case > 5. A performance test with a large input
> > To use this, save it as test_palindrome.py and make sure your
implementation is in a file named palindrome.py with the function
longest_palindromic_substring. Then run it with: > > > python -m
unittest test_palindrome.py > > > If you’re using a different file
structure or function name, you’ll need to adjust the import statement

136

10.4. Learning from Test Failures

accordingly.

10.4. Learning from Test Failures

Test failures provide valuable learning opportunities that can improve both
your current solution and your general understanding.

10.4.1. Debugging with AI Assistance

When tests fail, AI can help analyze the failure:

Human prompt:

My test case for "aacabdkacaa" is failing. The expected output is "aca" but my function returns "aa". Here's my implementation:

```python
def longest_palindromic_substring(s):

if not s:
return ""

start = 0
max_length = 1

for i in range(len(s)):
# Check odd length palindromes
left, right = i, i
while left >= 0 and right < len(s) and s[left] == s[right]:

if right - left + 1 > max_length:
max_length = right - left + 1
start = left

left -= 1
right += 1

137



10. Test with Data (Step 6)

# Check even length palindromes
left, right = i, i + 1
if right < len(s):

while left >= 0 and right < len(s) and s[left] == s[right]:
if right - left + 1 > max_length:

max_length = right - left + 1
start = left

left -= 1
right += 1

return s[start:start + max_length]

Can you help me identify what’s wrong?

**AI response:**
> I see the issue in your implementation when testing with "aacabdkacaa". Let me walk through this step by step.
>
> In the string "aacabdkacaa", the palindromes are:
> - "aa" at the beginning (length 2)
> - "a" (multiple single characters, length 1)
> - "aca" in the middle (length 3)
> - "acaa" at the end (length 4) ← Wait, this isn't a palindrome!
>
> Ah, I found the issue! The string "acaa" is not a palindrome (it would read "aaca" backwards). Let me trace through your code to see where it's going wrong.
>
> When checking the string "aacabdkacaa", your function should find "aca" as the longest palindrome, which has length 3. But it's returning "aa" which has length 2.
>
> Let me check the expected output again... the expected output is "aca" but your function returns "aa". There must be a bug in your code or an error in my analysis.
>
> Let's carefully trace through the string "aacabdkacaa":
> - Palindromes at position 0 ('a'): "a", "aa"

138



10.4. Learning from Test Failures

> - Palindromes at position 1 ('a'): "a", "aa", "aaca" (wait, this isn't a palindrome!)
>
> I think I've found the bug! In your implementation, when you're expanding around a center, you're updating `max_length` and `start` *before* confirming the substring is actually a palindrome.
>
> The issue is in both of your while loops. Let's focus on the even-
length check. When you check for even-length palindromes starting at position i, you immediately enter the while loop if s[i] == s[i+1]. But then you update `max_length` and `start` before checking if the next characters also match.
>
> Here's the correction needed:
>
> ```python
> def longest_palindromic_substring(s):
> if not s:
> return ""
>
> start = 0
> max_length = 1
>
> for i in range(len(s)):
> # Check odd length palindromes
> left, right = i, i
> while left >= 0 and right < len(s) and s[left] == s[right]:
> current_length = right - left + 1
> if current_length > max_length:
> max_length = current_length
> start = left
> left -= 1
> right += 1
>
> # Check even length palindromes
> left, right = i, i + 1
> while left >= 0 and right < len(s) and s[left] == s[right]:
> current_length = right - left + 1
> if current_length > max_length:
> max_length = current_length

139



10. Test with Data (Step 6)

> start = left
> left -= 1
> right += 1
>
> return s[start:start + max_length]
> ```
>
> The key change is adding a `current_length` variable to calculate the length inside the while loop. This ensures you're using the correct length for comparison.
>
> This bug would cause your function to sometimes return shorter palindromes when longer ones exist, especially in cases with repeated characters.

### Test-Driven Improvements

Use test results to drive improvements to your solution:

1. **Identify patterns in failures** - Look for commonalities in failing tests
2. **Fix one issue at a time** - Address each problem separately and retest
3. **Add regression tests** - Create specific tests for fixed issues
4. **Consider alternate approaches** - If fixing proves difficult, reconsider your algorithm

## Practical Exercise: Testing Our Solution

Let's test our longest palindromic substring implementation:

### Test Suite Implementation

```python
import unittest
import time

Import our implementation
from palindrome import longest_palindromic_substring

class TestLongestPalindromicSubstring(unittest.TestCase):

140

10.4. Learning from Test Failures

def test_basic_functionality(self):
"""Test basic functionality with standard inputs."""
self.assertEqual(longest_palindromic_substring("babad") in ["bab", "aba"], True)
self.assertEqual(longest_palindromic_substring("cbbd"), "bb")

def test_edge_cases(self):
"""Test edge cases."""
Empty string
self.assertEqual(longest_palindromic_substring(""), "")

Single character
self.assertEqual(longest_palindromic_substring("a"), "a")

Two identical characters
self.assertEqual(longest_palindromic_substring("aa"), "aa")

No palindromes longer than 1
result = longest_palindromic_substring("abcd")
self.assertTrue(len(result) == 1)
self.assertTrue(result in ["a", "b", "c", "d"])

def test_comprehensive_cases(self):
"""Test a variety of palindrome patterns."""
Entire string is a palindrome
self.assertEqual(longest_palindromic_substring("racecar"), "racecar")

Palindrome at the beginning
self.assertEqual(longest_palindromic_substring("abbaxyz"), "abba")

Palindrome at the end
self.assertEqual(longest_palindromic_substring("xyzabba"), "abba")

Palindrome in the middle
self.assertEqual(longest_palindromic_substring("xyzabbauvw"), "abba")

141

10. Test with Data (Step 6)

Multiple palindromes
self.assertEqual(longest_palindromic_substring("aacabdkacaa"), "aca")

def test_multiple_palindromes(self):
"""Test strings with multiple palindromes."""
Multiple palindromes of different lengths
self.assertEqual(longest_palindromic_substring("abcbaxyzzyxabc"), "xyzzyxa")

Multiple palindromes of same length
result = longest_palindromic_substring("abacababacab")
self.assertTrue(result in ["abacaba", "bacabab"])

def test_performance(self):
"""Test performance with large inputs."""
Long string with long palindrome
long_input = "a" * 500 + "b" + "a" * 500
start_time = time.time()
result = longest_palindromic_substring(long_input)
end_time = time.time()

self.assertEqual(len(result), 1001)
self.assertTrue(end_time - start_time < 1.0) # Should complete in under 1 second

if __name__ == "__main__":
unittest.main()

10.4.2. Test Execution and Results

Running our tests might reveal issues we hadn’t anticipated:

.F...F
==

142

10.4. Learning from Test Failures

FAIL: test_comprehensive_cases (__main__.TestLongestPalindromicSubstring)
Test a variety of palindrome patterns.
--
...
AssertionError: 'aaca' != 'aca'
...
==
FAIL: test_performance (__main__.TestLongestPalindromicSubstring)
Test performance with large inputs.
--
...
AssertionError: 999 != 1001
...

10.4.3. Fixing Issues Based on Test Results

Analyzing the failures and updating our implementation:

def longest_palindromic_substring(s):
"""
Find the longest palindromic substring in a given string.

Args:
s (str): The input string to process

Returns:
str: The longest palindromic substring

"""
if not s:

return ""

start = 0
max_length = 1

143

10. Test with Data (Step 6)

def expand_around_center(left, right):
"""
Expand around center while maintaining palindrome property.
Returns the length of the palindrome.
"""
while left >= 0 and right < len(s) and s[left] == s[right]:

left -= 1
right += 1

left+1 and right-1 are the actual palindrome boundaries
because we've gone one step too far in the while loop
return left + 1, right - 1 - left

for i in range(len(s)):
Check odd length palindromes
odd_start, odd_length = expand_around_center(i, i)
if odd_length > max_length:

start = odd_start
max_length = odd_length

Check even length palindromes
if i < len(s) - 1:

even_start, even_length = expand_around_center(i, i + 1)
if even_length > max_length:

start = even_start
max_length = even_length

return s[start:start + max_length]

10.4.4. Rerunning Tests

After fixing the issues, we run the tests again to verify the solution:

144

10.5. Key Takeaways

......
--
Ran 6 tests in 0.123s

OK

10.5. Key Takeaways

• Thorough testing is essential, even with AI-assisted implementation
• A comprehensive testing strategy includes functional tests, edge cases,

stress tests, performance tests, and regression tests
• AI can help identify edge cases and generate test code
• Test failures provide valuable learning opportunities
• The combination of human oversight and AI assistance leads to more

robust solutions

10.6. Moving Forward

With our solution thoroughly tested, we’ve completed the six-step method-
ology. This approach has helped us develop a correct and robust solution
while maintaining human understanding and control throughout the pro-
cess.

In the next section of the book, we’ll explore specific patterns and practices
for intentional prompting, beginning with Chapter 10’s exploration of
intentional prompting patterns—techniques for guiding AI through complex
programming tasks.

145

Part IV.

Patterns & Practices

147

11. Intentional Prompting Patterns

11.1. The Art of Guiding AI

Effective collaboration with AI assistants requires more than just asking
for solutions—it demands a thoughtful approach to crafting prompts that
guide the AI toward helpful, educational responses. This chapter explores
key patterns for intentional prompting that maximize the learning and
development value of AI interactions.

Figure 11.1.: Intentional Prompting Patterns

149

11. Intentional Prompting Patterns

11.2. Prompt Engineering: A Foundational Discipline

Prompt engineering has emerged as a critical field in AI interaction, focusing
on how to craft precise instructions that help AI models produce accurate,
relevant, and contextually appropriate responses. Beyond casual interaction,
it encompasses systematic techniques for improving AI output quality.

11.2.1. From Prompt Engineering to Intentional Prompting

It’s important to understand the relationship between prompt engineering
and intentional prompting:

Prompt engineering is primarily concerned with getting optimal outputs
from AI systems. It focuses on crafting the right words, examples, and
instructions to elicit high-quality responses from language models. Prompt
engineers develop expertise in understanding model behaviors, leveraging
context windows effectively, and using specialized techniques to guide AI
outputs.

Intentional prompting incorporates prompt engineering techniques but
embeds them within a comprehensive methodology for approaching pro-
gramming tasks. While prompt engineering asks “How can I get the best
output from this AI?”, intentional prompting asks “How can I use this AI as
part of a thoughtful development process that maintains my understanding
and control?”

The distinction becomes clearer when considering how each approach would
handle a complex programming task:

150

11.2. Prompt Engineering: A Foundational Discipline

Aspect
Prompt Engineering
Approach

Intentional Prompting
Approach

Initial
Task
Analy-
sis

Optimize prompt for
detailed requirements

Follow Steps 1-2: Restate
problem and identify
inputs/outputs

Prob-
lem
Under-
stand-
ing

Focus on conveying
requirements clearly to AI

Follow Step 3: Work through
examples by hand to build
understanding

Solu-
tion
Design

Craft prompts to generate
complete solutions

Follow Step 4: Create
pseudocode before
implementation

Code
Gener-
ation

Refine prompts until
satisfactory code is produced

Follow Step 5: Use AI to
implement pseudocode while
maintaining understanding

Verifi-
cation

Prompt AI to validate
generated code

Follow Step 6: Rigorously test
with data, especially edge cases

Learn-
ing
Out-
come

Improvement in prompt
crafting skills

Improvement in both
programming and AI
collaboration skills

Intentional prompting doesn’t replace prompt engineering—it integrates
its techniques within a broader approach that preserves human agency,
understanding, and skill development.

151

11. Intentional Prompting Patterns

11.2.2. Core Prompt Engineering Techniques

11.2.2.1. Zero-Shot Prompting

Zero-shot prompting instructs an AI to perform a task without providing
examples within the prompt. This technique leverages the model’s pre-
existing knowledge to generate responses to novel tasks.

Example:

Write a function that validates email addresses using regular expressions.

Zero-shot prompting works well for common tasks where the AI has exten-
sive training data, but may struggle with specialized or complex tasks.

11.2.2.2. Few-Shot Prompting

This technique provides the model with one or more examples of expected
input-output pairs before presenting the actual task. Examples help the
model understand the desired format and approach.

Example:

Here's an example of validating a phone number:

Input: "555-123-4567"
Output: Valid (matches pattern XXX-XXX-XXXX)

Input: "5551234567"
Output: Valid (can be reformatted to XXX-XXX-XXXX)

Input: "555-1234"
Output: Invalid (too few digits)

152

11.2. Prompt Engineering: A Foundational Discipline

Now, write a function that validates phone numbers according to this logic.

Few-shot prompting is particularly valuable for tasks with specific format-
ting requirements or uncommon patterns.

11.2.2.3. Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting encourages the model to break down
complex reasoning into intermediate steps, leading to more comprehensive
and accurate outputs. This technique mimics human reasoning processes.

Example:

Let's solve this step by step: Write a function that finds the longest common subsequence of two strings.

First, let's understand what a subsequence is...
Next, let's think about how to identify common subsequences...
Then, we'll need an algorithm to find the longest one...

Chain-of-thought prompting significantly improves performance on prob-
lems requiring multi-step reasoning or algorithmic thinking.

11.2.2.4. Role-Based Prompting

Role-based prompting assigns a specific professional or character role to the
AI, which helps frame its responses within a particular domain of expertise
or perspective.

Example:

As an experienced software architect, analyze this function and suggest improvements for scalability and performance.

153

11. Intentional Prompting Patterns

This technique helps orient the AI toward specific terminology, frameworks,
and priorities relevant to the assigned role.

11.3. Types of Intentional Prompts

11.3.1. Foundation Prompts

Foundation prompts establish the baseline requirements for a programming
task. Instead of just asking for a solution, these prompts set the stage for
a productive dialogue.

Examples:

"I need to write a Python program that analyzes student grades and calculates statistics."

"Can you help me design a function that validates user input according to these requirements..."

"I'm working on a data structure to represent a family tree. What would be a good approach?"

Foundation prompts should provide enough context for the AI to under-
stand the goal without being overly prescriptive about implementation
details.

11.3.2. Clarification Prompts

Clarification prompts refine requirements and explore edge cases before
diving into implementation.

Examples:

154

11.3. Types of Intentional Prompts

"Should the function handle negative numbers, or can we assume all inputs are positive?"

"What's a better approach for storing this data: a nested dictionary or a custom class?"

"How should we handle the case where a user enters text instead of a number?"

These prompts encourage thinking about requirements thoroughly before
committing to code, a practice that prevents rework and bugs.

11.3.3. Scaffolding Prompts

Scaffolding prompts support learning by breaking down complex concepts
into understandable components.

Examples:

"Before we implement this recursion, can you explain how the call stack will work in this case?"

"What's happening in this line of code that uses list comprehension? Can you break it down step by step?"

"Can you show me how this algorithm would process this specific input, step by step?"

These prompts transform the AI from a code generator into a tutor that
helps build deeper understanding.

11.3.4. Challenge Prompts

Challenge prompts deliberately introduce programming challenges to test
understanding and explore potential issues.

Examples:

155

11. Intentional Prompting Patterns

"What happens if the user enters an empty string here?"

"How would this code handle a very large dataset? Would it still be efficient?"

"Is there a potential race condition in this multithreaded approach?"

Challenge prompts help develop critical thinking about code rather than
just accepting first solutions.

11.3.5. Refinement Prompts

Refinement prompts push for code improvements based on best practices
and efficiency considerations.

Examples:

"Can we make this code more efficient in terms of memory usage?"

"Is there a more idiomatic way to write this in Python?"

"How could we refactor this to improve readability while maintaining functionality?"

These prompts help develop an eye for quality and foster continuous
improvement.

11.3.6. Error Induction Prompts

Error induction prompts intentionally guide the AI toward making specific
mistakes to explore error handling and debugging processes.

Examples:

156

11.4. Effective Prompting Patterns

"Let's use a recursive approach without considering the base case first."

"What if we don't handle the edge case where the input is empty?"

"Let's implement this without worrying about thread safety for now."

These prompts create valuable learning opportunities by examining poten-
tial failure modes.

11.4. Effective Prompting Patterns

11.4.1. The “What If?” Pattern

1. Get working code from the AI
2. Ask “What if [edge case]?”
3. Evaluate the AI’s solution against your understanding
4. Repeat with increasingly complex edge cases

This pattern systematically explores the boundaries of a solution, building
robustness and understanding.

11.4.2. The Incremental Building Pattern

1. Start with a minimally viable solution
2. Add one feature at a time
3. Integrate and test after each addition

This pattern mirrors agile development practices, keeping the development
process manageable and focused.

157

11. Intentional Prompting Patterns

11.4.3. The Deliberate Error Pattern

1. Let the AI generate a solution
2. Identify a potential issue (even if the AI didn’t make the error)
3. Ask: “Is there a problem with how this handles [specific case]?”
4. Use the discussion to deepen understanding

This pattern develops debugging skills and critical evaluation of code.

11.4.4. The Comparative Analysis Pattern

1. Ask the AI to implement a solution two different ways
2. Request a comparison of trade-offs between approaches
3. Make an informed decision based on the analysis

This pattern builds judgment about different implementation strategies.

11.5. Advanced Prompt Engineering Strategies

Beyond the basic techniques described earlier, several advanced prompt
engineering strategies can further enhance your interactions with AI coding
assistants:

11.5.1. Context-Enhanced Prompting

This technique involves providing rich background information to help the
AI generate more appropriate and contextually relevant responses.

Example:

158

11.5. Advanced Prompt Engineering Strategies

I'm building a web application with React frontend and Django backend. The application needs to handle both authenticated and unauthenticated users. We're using JWT for authentication.

Now I need to implement a function that checks if a user's token is valid and returns appropriate data based on their permission level.

Context-enhanced prompting is particularly valuable when working on
components of larger systems where architectural decisions and constraints
need to be considered.

11.5.2. Constraint-Based Prompting

By explicitly stating constraints and requirements, you can guide the AI
to produce solutions that fit within your project’s specific parameters.

Example:

Write a sorting algorithm that:
- Uses O(n log n) time complexity
- Uses no more than O(1) extra space
- Is stable (maintains relative order of equal elements)
- Works well with partially sorted data

This approach is especially useful for performance-critical applications or
when working within specific technical limitations.

11.5.3. Template-Guided Prompting

Template-guided prompting provides a structural framework that the AI
should follow in its response. This ensures consistency and completeness.

Example:

159

11. Intentional Prompting Patterns

Analyze this function using the following template:
1. Time complexity:
2. Space complexity:
3. Edge cases not handled:
4. Potential optimizations:
5. Clean code suggestions:

This strategy helps ensure the AI covers all necessary aspects of a problem
rather than focusing only on the most obvious elements.

11.6. Integrating Prompt Engineering with
Intentional Prompting

Intentional prompting isn’t an alternative to prompt engineering—it’s
an evolution that incorporates prompt engineering techniques within a
more comprehensive methodology. This integration allows us to leverage
the power of well-crafted prompts while maintaining the educational and
developmental benefits of intentional practice.

11.6.1. The Symbiotic Relationship

Prompt engineering provides the tactical tools for effective AI interaction,
while intentional prompting provides the strategic framework for applying
these tools:

Prompt Engineering Provides Intentional Prompting Provides

Techniques for precise AI
instructions

Framework for maintaining human
agency

Methods for optimizing AI
responses

Structure for educational development

160

11.6. Integrating Prompt Engineering with Intentional Prompting

Prompt Engineering Provides Intentional Prompting Provides

Domain-specific prompting
strategies

Process that builds understanding

Input formatting best practices Context for when/how to apply
techniques

This relationship means that becoming skilled at intentional prompting
requires developing competence in prompt engineering techniques, but
applies those techniques within a thoughtful methodology that prioritizes
human understanding and agency.

The intentional prompting patterns we’ve explored can be integrated into
various workflows and methodologies. While they align particularly well
with the six-step programming methodology discussed in this book, their
application extends far beyond this specific framework.

11.6.2. Reinforcing the Six-Step Methodology

Intentional prompting naturally reinforces our six-step programming
methodology:

1. Restate the problem → Use foundation prompts and chain-of-
thought techniques to clarify the problem

2. Identify input/output → Use clarification prompts and constraint-
based prompting to define boundaries

3. Work by hand → Do this yourself, then use few-shot prompting to
verify understanding

4. Write pseudocode → Use template-guided prompting for consistent
pseudocode structure

5. Convert to code → Apply role-based prompting (e.g., “as an expert
Python developer”) for idiomatic code

161

11. Intentional Prompting Patterns

6. Test with data → Combine challenge prompts with context-
enhanced prompting for thorough testing

By combining formal prompt engineering techniques with intentional
prompting patterns within this methodology, you develop a deeper un-
derstanding of programming concepts than simply asking for complete
solutions.

11.6.3. Beyond the Six-Step Framework: Universal Application

While our methodology provides a structured approach, the core principles
of intentional prompting apply universally across different development
approaches and even beyond programming:

11.6.3.1. In Agile Development

• Use foundation and clarification prompts during sprint planning
• Apply challenge prompts during code reviews
• Leverage refinement prompts during refactoring sprints
• Use template-guided prompting for documentation tasks

11.6.3.2. In Domain-Specific Development

• Data Science: Apply chain-of-thought prompting to break down
complex analytical problems

• Front-End Development: Use visual constraint prompts for UI
implementation

• DevOps: Leverage role-based prompting for security auditing and
configuration

• Systems Architecture: Apply comparative analysis prompts when
evaluating design alternatives

162

11.6. Integrating Prompt Engineering with Intentional Prompting

11.6.3.3. Beyond Programming

The principles of intentional prompting extend to:

• Technical writing: Guiding AI to produce clear, structured docu-
mentation

• Educational content: Creating learning materials that build un-
derstanding

• Project management: Breaking down complex tasks and planning
workflows

• Problem-solving in any domain: Applying structured thinking
to any challenge

11.6.4. AI as a Thoughtful Assistant

Across all these applications, intentional prompting embraces AI as a
thoughtful assistant rather than a replacement for human judgment. This
partnership model is based on five key principles:

1. Human-led workflows: The human sets goals, defines parameters,
and makes the final decisions

2. Critical evaluation: Thoughtfully evaluating AI suggestions based
on expertise and context

3. Iterative collaboration: Engaging in a refinement process where
AI suggestions improve through feedback

4. Domain-appropriate trust: Recognizing where AI excels versus
where human judgment is essential

5. Skill complementarity: Using AI for appropriate tasks while
keeping human focus on creative and strategic aspects

By applying these principles across any methodology or domain, intentional
prompting creates a collaborative relationship that leverages both human
and AI strengths while overcoming their respective limitations.

163

11. Intentional Prompting Patterns

11.7. Measuring Your Progress

As you practice intentional prompting, you can track your growth:

Beginner Level: - You can identify obvious errors in AI-generated code -
You depend on the AI to explain most concepts - Your prompts are simple
and general

Intermediate Level: - You can spot subtle logical errors - You ask about
specific programming concepts - Your prompts include anticipated edge
cases

Advanced Level: - You strategically guide the AI toward teaching
moments - You compare multiple solution approaches - Your prompts
demonstrate computational thinking - You question efficiency, readability,
and best practices

11.8. Case Study: Improving a Weather Data
Function

Let’s examine a practical example of intentional prompting that demon-
strates how to guide an AI from a basic implementation to a robust
solution.

11.8.1. Initial Prompt

A developer starts with a simple request:

Write a function to retrieve weather data from the wttr.in API for a given location.

164

11.8. Case Study: Improving a Weather Data Function

11.8.2. Initial AI-Generated Code

def get_weather(location):
import requests

url = f"https://wttr.in/{location}?format=j1"
response = requests.get(url)
data = response.json()

return data

11.8.3. Analysis of the Initial Code

The developer analyzes the initial code and identifies several issues:

1. No error handling - will crash if the API is down or returns an error
2. No input validation for the location parameter
3. Returns the raw API response which is complex and includes unnec-

essary data
4. No timeout parameter which could cause the application to hang
5. No docstring or comments explaining how to use the function

11.8.4. Follow-up Prompt with Specific Improvements

The developer then crafts a follow-up prompt that addresses each identified
issue:

Thanks for the starting point. I'd like to improve this function with:

1. Error handling for API failures and bad responses
2. Location input validation

165

11. Intentional Prompting Patterns

3. A timeout parameter to prevent hanging
4. A way to process the response to return only essential weather information
5. Proper documentation with parameters and return values explained

Also, can you make it handle the forecast_days parameter to allow getting forecast for multiple days?

11.8.5. Improved AI-Generated Code

def get_weather_data(location, forecast_days=5, timeout=10):
"""
Retrieve weather data for a specified location from wttr.in API.

Args:
location (str): City or location name
forecast_days (int): Number of days to forecast (1-5)
timeout (int): Timeout for API request in seconds

Returns:
dict: Weather data including current conditions and forecast,

or None if an error occurred
"""
import requests

Input validation
if not location or not isinstance(location, str):

print("Error: Location must be a non-empty string")
return None

if not 1 <= forecast_days <= 5:
print("Error: forecast_days must be between 1 and 5")
forecast_days = min(max(1, forecast_days), 5) # Clamp to valid range

166

11.8. Case Study: Improving a Weather Data Function

Clean up the location string
location = location.strip().replace(" ", "+")

try:
Make request to wttr.in API
url = f"https://wttr.in/{location}?format=j1"
response = requests.get(url, timeout=timeout)
response.raise_for_status() # Raise exception for HTTP errors

Parse JSON response
data = response.json()

Process and extract relevant information
result = {

"location": location.replace("+", " "),
"current": {

"temperature": {
"current": int(data["current_condition"][0]["temp_C"]),
"feels_like": int(data["current_condition"][0]["FeelsLikeC"])

},
"condition": data["current_condition"][0]["weatherDesc"][0]["value"],
"humidity": int(data["current_condition"][0]["humidity"]),
"wind": {

"speed": int(data["current_condition"][0]["windspeedKmph"]),
"direction": data["current_condition"][0]["winddir16Point"]

},
"precipitation": float(data["current_condition"][0]["precipMM"])

},
"forecast": []

}

Add forecast data
for i in range(min(forecast_days, len(data["weather"]))):

167

11. Intentional Prompting Patterns

day = data["weather"][i]
forecast_day = {

"date": day["date"],
"max_temp": int(day["maxtempC"]),
"min_temp": int(day["mintempC"]),
"condition": day["hourly"][4]["weatherDesc"][0]["value"], # Midday condition
"precipitation": {

"chance": int(day["hourly"][4]["chanceofrain"]),
"amount": float(day["hourly"][4]["precipMM"])

},
"wind": {

"speed": int(day["hourly"][4]["windspeedKmph"]),
"direction": day["hourly"][4]["winddir16Point"]

}
}
result["forecast"].append(forecast_day)

return result

except requests.exceptions.RequestException as e:
print(f"Error retrieving weather data: {e}")
return None

except (KeyError, ValueError, TypeError) as e:
print(f"Error processing weather data: {e}")
return None

11.8.6. Why This Prompting Strategy Was Effective

The follow-up prompt was effective because:

1. It identified specific problems in the initial code rather than just
asking for “better code”

168

11.9. Key Takeaways

2. It requested specific improvements with clear objectives (error
handling, validation, etc.)

3. It suggested a new feature (forecast_days parameter) that made
the function more useful

4. It asked for proper documentation which resulted in compre-
hensive docstrings

This approach guided the AI to generate a much more robust function
that:

• Is properly documented
• Validates inputs
• Has comprehensive error handling
• Returns structured, processed data instead of raw API response
• Includes the new forecast functionality requested

The key to effective prompting was being specific about what needed
improvement and why, rather than making vague requests for “better”
code.

11.9. Key Takeaways

1. The goal is not to get a perfect solution from the AI, but to use the
interaction to deepen your understanding

2. Your programming knowledge is demonstrated by the quality of
your prompts

3. Intentionally introducing challenges and constraints leads to better
learning outcomes

4. The best programmers aren’t those who know all the answers, but
those who know how to ask the right questions

5. Specific, targeted follow-up prompts yield much better results than
vague requests for improvement

169

11. Intentional Prompting Patterns

In the next chapter, we’ll explore how these prompting patterns can be
applied specifically to debugging tasks, creating a powerful workflow for
solving problems in your code.

170

12. Debugging with AI

Debugging is often one of the most challenging and time-consuming aspects
of programming. AI assistants can be powerful allies in the debugging
process, helping identify and fix issues more efficiently than traditional
approaches. This chapter explores how to use intentional prompting
techniques specifically for debugging tasks.

12.1. Common Debugging Scenarios

12.1.1. Syntax Errors

Syntax errors occur when code violates the rules of the programming
language. These are typically the easiest errors to fix, as they’re caught by
compilers or interpreters before the code runs.

AI assistants can: - Explain cryptic error messages in plain language -
Identify the exact location of syntax errors - Suggest corrections based on
context

Example prompt:

I'm getting this syntax error in my Python code:

```python
def calculate_total(items):

total = 0

171



12. Debugging with AI

for item in items
total += item.price

return total

SyntaxError: invalid syntax

Can you identify what’s wrong and how to fix it?

### Logic Errors

Logic errors occur when the code runs without errors but doesn't produce the expected results. These are often more difficult to identify and fix than syntax errors.

AI assistants can:
- Trace through code execution step by step
- Identify flawed assumptions or logical gaps
- Suggest alternative approaches

**Example prompt:**

My binary search function seems to work for some cases but fails for
others:

def binary_search(arr, target):
left = 0
right = len(arr) - 1

while left <= right:
mid = (left + right) // 2

if arr[mid] == target:
return mid

elif arr[mid] < target:

172



12.1. Common Debugging Scenarios

left = mid + 1
else:

right = mid - 1

return -1

It correctly finds 5 in [1, 3, 5, 7, 9], but when I search for 7 in [1, 3, 5, 7,
9], it returns -1 instead of 3. Can you help me find the bug?

### Runtime Errors

Runtime errors occur during program execution and cause the program to terminate unexpectedly. These include exceptions, segmentation faults, and other crashes.

AI assistants can:
- Analyze error messages and stack traces
- Identify common causes for specific exceptions
- Suggest defensive programming techniques to prevent crashes

**Example prompt:**

My code is throwing the following exception:

IndexError: list index out of range

Here’s the relevant function:

def process_data(data_list):
result = []
for i in range(len(data_list)):

result.append(data_list[i] + data_list[i+1])
return result

173



12. Debugging with AI

It crashes when I call it with process_data([1, 2, 3, 4]). Why is this
happening and how can I fix it?

### Performance Issues

Performance issues occur when code runs correctly but takes too long to execute or consumes excessive resources.

AI assistants can:
- Identify performance bottlenecks
- Suggest algorithmic improvements
- Recommend more efficient data structures or libraries

**Example prompt:**

My function to find duplicate values in a list becomes extremely slow with
large inputs:

def find_duplicates(values):
duplicates = []
for i in range(len(values)):

for j in range(i+1, len(values)):
if values[i] == values[j] and values[i] not in duplicates:

duplicates.append(values[i])
return duplicates

How can I optimize this to handle lists with thousands of items efficiently?

## Prompt Templates for Debugging

### Error Diagnosis Template

174



12.1. Common Debugging Scenarios

When you encounter an error message:

I’m getting this error message:

[paste the complete error message including stack trace]

From this code:

[paste the relevant code section]

1. What is causing this error?
2. How can I fix it?
3. Is there a better approach to what I’m trying to do?

### Code Review Template

When your code runs but doesn't behave as expected:

My code should [describe expected behavior], but instead it [describe actual
behavior]:

[paste the code]

Here’s an example of the input: [provide a specific example]

Expected output: [describe what you expect] Actual output: [describe
what actually happens]

Can you help me identify what’s wrong?

175



12. Debugging with AI

### Step-by-Step Tracing Template

For understanding exactly where logic goes wrong:

Could you help me trace through this function step by step with the input
[specific input]?

[paste function code]

I’d like to see the value of each variable at each step to understand where
my logic is failing.

### Performance Debugging Template

For optimizing slow code:

This function works correctly but becomes slow with larger inputs:

[paste code]

1. What is the time complexity of this function?
2. Where are the performance bottlenecks?
3. How can I optimize it while maintaining the same functionality?

## Effective Debugging Workflows

### The Divide and Conquer Approach

When debugging complex issues, breaking the problem down is often the most effective strategy:

1. **Isolate the problem**:

176



12.1. Common Debugging Scenarios

I’m not sure which part of my code is causing the issue. If I comment out
the sections marked #A, #B, and #C, does anything stand out as a likely
culprit? “‘

2. Create a minimal reproduction:

Here's a simplified version of my code that still produces the error.
Can you identify the issue in this smaller example?

3. Binary search the code:

If I commented out the first half of the function, the error disappears.
Can you help me narrow down which part of the first half is problematic?

12.1.2. The Hypothesis Testing Approach

Debugging by forming and testing specific hypotheses:

1. Form a hypothesis:

I suspect the issue might be related to how I'm handling null values.
Does that seem like a plausible cause based on the symptoms?

2. Design a test:

How can I modify my code to verify whether null values are causing the issue?

3. Interpret results:

I added print statements before and after the suspected line,
and I'm seeing [specific output]. What does this tell us?

177



12. Debugging with AI

12.1.3. The Comparative Analysis Approach

Debugging by comparing working and non-working code:

1. Identify differences:

This code works correctly:
[working code]

But this similar code fails:
[failing code]

What key differences explain why one works and the other doesn't?

2. Incremental changes:

If I change my code from A to B incrementally, at what point does it break?
I'll start by changing X and see if that affects the behavior.

3. Reference implementation:

Here's my implementation of algorithm X that isn't working:
[my code]

And here's a reference implementation that works:
[reference code]

What am I doing differently that could cause my issues?

12.2. Understanding Error Messages with AI

Error messages can often be cryptic, especially for beginners. AI assistants
can translate these messages into actionable information.

178



12.2. Understanding Error Messages with AI

12.2.1. Anatomy of Error Messages

When sharing error messages with AI, include:

1. The error type/name
2. The error message
3. The line number or location
4. The stack trace (if available)
5. The context surrounding the error

Example prompt:

I'm getting this error message, but I don't understand what it means:

TypeError: cannot unpack non-iterable int object
File "my_script.py", line 42, in process_data
key, value = data_point

File "my_script.py", line 27, in main
results = process_data(points)

The data_point variable is coming from this loop:
for data_point in processed_points:

key, value = data_point
# rest of code...

Can you explain what this error means and how to fix it?

12.2.2. Common Error Patterns

AI can help identify patterns in errors that might indicate systemic issues:

Example prompt:

179



12. Debugging with AI

I keep getting different errors in different parts of my codebase, but they all seem related to type mismatches. Here are three recent examples:

[Error 1 details]
[Error 2 details]
[Error 3 details]

Is there a common root cause that might explain all of these errors? Should I be looking for a specific pattern in my code?

12.3. Debugging Strategies with AI

12.3.1. Rubber Duck Debugging

Rubber duck debugging involves explaining your code line by line, which
often helps you spot the issue yourself. AI can serve as an advanced “rubber
duck” that can also respond with insights.

Example prompt:

I'm going to walk through this function line by line to try to understand why it's not working. Please let me know if you spot any issues in my explanation:

```python
def merge_sorted_lists(list1, list2):

result = []
i = j = 0

while i < len(list1) and j < len(list2):
if list1[i] < list2[j]:

result.append(list1[i])
i += 1

else:
result.append(list2[j])
j += 1

180

12.3. Debugging Strategies with AI

At this point, either list1 or list2 might have remaining elements
I expect this to add any remaining elements from list1
result.extend(list1)

And this should add any remaining elements from list2
result.extend(list2)

return result

When I call this with [1, 3, 5] and [2, 4, 6], I expect [1, 2, 3, 4, 5, 6] but
get [1, 2, 3, 4, 5, 6, 3, 5, 2, 4, 6]. What am I missing?

Print Debugging with AI

Print debugging involves adding print statements to track variable values. AI can suggest strategic places to add these statements.

Example prompt:

I suspect my recursive function is not terminating correctly. Where should
I add print statements to debug it effectively?

def factorial(n):
if n <= 1:

return 1
else:

return n * factorial(n-1)

It works for small inputs but crashes with large ones.

181

12. Debugging with AI

Root Cause Analysis

AI can help trace errors back to their root causes:

Example prompt:

My web application is throwing this error:

DatabaseError: too many database connections

This happens sporadically, usually during peak usage hours. The database
connection code looks like this:

def get_db_connection():
return psycopg2.connect(DATABASE_URL)

def fetch_user_data(user_id):
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute("SELECT * FROM users WHERE id = %s", (user_id,))
return cursor.fetchone()

What could be the root cause, and how can I fix it?

Debugging AI-Generated Code

A common scenario is debugging code that AI has generated but contains subtle errors. This situation provides excellent learning opportunities by requiring you to critically analyze and fix issues.

Example: Debugging a Gradebook Program

Consider this AI-generated code for a student gradebook:

182

12.3. Debugging Strategies with AI

```python
students = {

"Alice": "85, 90, 78",
"Bob": "70, 88, 92"

}

for name in students:
avg = sum(students[name]) / len(students[name])
print(f"{name}: {avg}")

Analysis of Errors:

This code contains several issues: 1. The scores are stored as strings rather
than numbers 2. The sum() function won’t work on strings 3. Using string
length for division will give incorrect results

Effective Debugging Prompt:

Your code stores scores as strings. Can you fix it so each student has a list of numbers instead?

AI Response (improved but still with issues):

students = {
"Alice": [85, 90, 78],
"Bob": [70, 88, 92]

}

for name in students:
total = 0
for score in students[name]:

total += score
avg = total / 3
print(f"{name} average is {avg}")

183



12. Debugging with AI

Further Analysis: The code now works but has a critical flaw: it assumes
each student has exactly 3 scores.

Follow-up Debugging Prompt:

Can you make a function to calculate the average of any list of scores, instead of assuming 3?

AI Response (further improved):

def average(scores):
return sum(scores) / len(scores)

for name, scores in students.items():
print(f"{name} average: {average(scores)}")

This iterative debugging process demonstrates key skills: 1. Identifying
specific errors in AI-generated code 2. Creating targeted prompts to address
those errors 3. Iteratively improving the solution through focused feedback
4. Thinking critically about assumptions and edge cases

This approach is particularly valuable for learning, as it requires under-
standing both the problem and the implementation details rather than just
accepting whatever code the AI generates.

12.4. Avoiding Debugging Pitfalls

12.4.1. The XY Problem

The XY Problem occurs when you ask about your attempted solution (Y)
rather than your actual problem (X), leading to inefficient debugging. AI
can help identify this pattern.

Wrong approach:

184



12.4. Avoiding Debugging Pitfalls

How do I make this regex work for validating email addresses?

/^[a-zA-Z0-9]+@[a-zA-Z0-9]+$/

Better approach:

I need to validate email addresses in my application.
I tried using this regex: /^[a-zA-Z0-9]+\\@[a-zA-Z0-9]+$/

But it doesn't handle cases like:
- Dots in the local part (john.doe\@example.com)
- Hyphens in domain names (example-site.com)
- TLDs with more than one segment (.co.uk)

What's the best approach for validating email addresses, considering these requirements?

12.4.2. The Correlation � Causation Trap

This occurs when you attribute a bug to something that happened around
the same time, but isn’t actually the cause.

Example:

After adding a new CSS file to my project, my JavaScript form validation stopped working.
Here's the new CSS I added:

[CSS code]

And here's my validation function:

[JS code]

How could the CSS be breaking my JavaScript?

185



12. Debugging with AI

AI might respond: > The CSS you’ve added is unlikely to directly
break your JavaScript validation. These are separate concerns in web
development. Let’s look for other possible causes: > > 1. Did you make
any other changes at the same time? > 2. Could there be a JS syntax
error that’s preventing execution? > 3. Are you using CSS selectors in
your JS that might no longer match? > 4. Did you accidentally change
any IDs or classes used by both? > > Let’s examine your JavaScript for
the actual issue…

12.4.3. The Bandage Solution

This occurs when you fix the symptoms of a bug rather than the underlying
cause. AI can help identify deeper issues.

Example prompt:

My function sometimes returns NaN, so I added a check to return 0 instead when that happens:

```javascript
function calculateAverage(numbers) {

let sum = 0;
for (let i = 0; i < numbers.length; i++) {
sum += numbers[i];

}
let average = sum / numbers.length;

// Fix for the NaN issue
if (isNaN(average)) {
return 0;

}

return average;
}

186

12.4. Avoiding Debugging Pitfalls

This fixes the immediate problem, but is there a better approach?

Case Study: Debugging a Complex Issue

Let's walk through a complete debugging process using AI assistance:

Initial Problem Statement

Human prompt:

My sorting algorithm isn’t working properly. It’s supposed to sort an array
of numbers in ascending order, but some arrays end up partially sorted:

def bubble_sort(arr):
n = len(arr)
for i in range(n):

for j in range(0, n - i - 1):
if arr[j] > arr[j + 1]:

arr[j], arr[j + 1] = arr[j + 1], arr[j]
return arr

It works for [5, 3, 8, 1, 2], giving [1, 2, 3, 5, 8]. But for [5, 3, 8, 1, 2, 9, 4],
it gives [1, 2, 3, 5, 4, 8, 9]. What’s going wrong?

Tracing Execution

AI response:
> Let me trace through the bubble sort algorithm step by step with the input [5, 3, 8, 1, 2, 9, 4].
>
> In bubble sort, we compare adjacent elements and swap them if they're in the wrong order. After each complete pass through the array, the largest element "bubbles up" to its correct position.

187

12. Debugging with AI

>
> Let's trace through each pass:
>
> Initial array: [5, 3, 8, 1, 2, 9, 4]
>
> Pass 1 (i=0):
> - Compare 5 and 3: Swap → [3, 5, 8, 1, 2, 9, 4]
> - Compare 5 and 8: No swap → [3, 5, 8, 1, 2, 9, 4]
> - Compare 8 and 1: Swap → [3, 5, 1, 8, 2, 9, 4]
> - Compare 8 and 2: Swap → [3, 5, 1, 2, 8, 9, 4]
> - Compare 8 and 9: No swap → [3, 5, 1, 2, 8, 9, 4]
> - Compare 9 and 4: Swap → [3, 5, 1, 2, 8, 4, 9]
>
> After Pass 1: [3, 5, 1, 2, 8, 4, 9]
>
> Pass 2 (i=1):
> - Compare 3 and 5: No swap → [3, 5, 1, 2, 8, 4, 9]
> - Compare 5 and 1: Swap → [3, 1, 5, 2, 8, 4, 9]
> - Compare 5 and 2: Swap → [3, 1, 2, 5, 8, 4, 9]
> - Compare 5 and 8: No swap → [3, 1, 2, 5, 8, 4, 9]
> - Compare 8 and 4: Swap → [3, 1, 2, 5, 4, 8, 9]
>
> After Pass 2: [3, 1, 2, 5, 4, 8, 9]
>
> Wait, I need to review the algorithm. In a correct bubble sort, the largest elements should bubble to the end, and we should get closer to the correct sort with each pass. Let me carefully check your implementation...
>
> I don't see anything wrong with your bubble sort implementation. Let me continue tracing:
>
> Pass 3 (i=2):
> - Compare 3 and 1: Swap → [1, 3, 2, 5, 4, 8, 9]
> - Compare 3 and 2: Swap → [1, 2, 3, 5, 4, 8, 9]
> - Compare 3 and 5: No swap → [1, 2, 3, 5, 4, 8, 9]
> - Compare 5 and 4: Swap → [1, 2, 3, 4, 5, 8, 9]
>

188

12.4. Avoiding Debugging Pitfalls

> After Pass 3: [1, 2, 3, 4, 5, 8, 9]
>
> Wait, this is now correctly sorted! Let me trace one more pass to be sure:
>
> Pass 4 (i=3):
> - Compare 1 and 2: No swap → [1, 2, 3, 4, 5, 8, 9]
> - Compare 2 and 3: No swap → [1, 2, 3, 4, 5, 8, 9]
> - Compare 3 and 4: No swap → [1, 2, 3, 4, 5, 8, 9]
>
> No more swaps are needed. The array is now [1, 2, 3, 4, 5, 8, 9], which is correctly sorted.
>
> It seems the algorithm is working correctly after all. The expected output for [5, 3, 8, 1, 2, 9, 4] should be [1, 2, 3, 4, 5, 8, 9], not [1, 2, 3, 5, 4, 8, 9] as you mentioned.
>
> There may be an issue elsewhere in your code, or perhaps there was a mistake in the observed output. Could you verify the output again, or provide more context about how you're calling and testing this function?

Debugging the Test Case

Human prompt:

You’re right, I made a mistake in reporting the output. Let me recheck…

I ran the function again with [5, 3, 8, 1, 2, 9, 4], and now I’m getting [1, 2,
3, 4, 5, 8, 9], which is correct.

However, I’m running this inside a larger application where I call the
function like this:

def process_data(data_sets):
results = []
for data in data_sets:

sorted_data = bubble_sort(data.copy())
results.append(sorted_data)

return results

189

12. Debugging with AI

And I’m still seeing some incorrect sorts in the output. Could there be an
issue with how I’m calling it?

Identifying the Root Cause

AI response:
> Based on your updated information, the bubble sort implementation itself appears to be working correctly. The issue might be in how it's being called or how the data is being processed within your larger application.
>
> Let's analyze the `process_data` function:
>
> ```python
> def process_data(data_sets):
> results = []
> for data in data_sets:
> sorted_data = bubble_sort(data.copy())
> results.append(sorted_data)
> return results
> ```
>
> This function:
> 1. Takes a list of data sets
> 2. Creates a copy of each data set
> 3. Sorts the copy using bubble_sort
> 4. Appends the sorted data to a results list
> 5. Returns all results
>
> This approach seems correct. You're creating a copy of each data set before sorting, which is good practice to avoid modifying the original data.
>
> Here are some potential issues to check:
>
> 1. **Data type consistency**: Are all elements in your arrays numbers? Sorting mixed types (like strings and numbers) can lead to unexpected results.
>

190

12.4. Avoiding Debugging Pitfalls

> 2. **Mutable objects**: If your arrays contain mutable objects rather than simple numbers, the sorting might be affected by reference issues.
>
> 3. **Preservation of original data**: Double-check that `data.copy()` is creating a proper copy. For nested structures, you might need a deep copy.
>
> 4. **Concurrency issues**: If your application is multi-
threaded, there could be race conditions affecting the sorting.
>
> 5. **Data transformation**: Is the data being transformed between the sorting and when you observe the results?
>
> 6. **Visualization/display issue**: Sometimes the issue is not with the sorting but with how results are displayed or accessed.
>
> Can you share:
> 1. A specific example of a dataset that's being incorrectly sorted in your application
> 2. How you're verifying the results (e.g., printing them, displaying in UI)
> 3. Any processing that happens to the results after sorting

Resolution

Human prompt:

I think I found the issue. In another part of the code, there’s a function
that modifies the results after sorting:

def highlight_outliers(data_list):
for i in range(len(data_list)):

Swap positions of certain elements to highlight them
for j in range(len(data_list[i])-1):

if data_list[i][j] > data_list[i][j+1] * 2: # Highlight elements 2x larger than next
data_list[i][j], data_list[i][j+1] = data_list[i][j+1], data_list[i][j]

return data_list

This is being called on the results from process_data! It’s intentionally
un-sorting some elements to highlight outliers, but I forgot it was there.

191

12. Debugging with AI

Thank you for helping me trace through the algorithm; it confirmed that
my bubble sort is correct and led me to look elsewhere for the issue.

Key Takeaways

- Effective debugging with AI requires clear communication about errors and context
- Different debugging scenarios call for different prompting strategies
- Templates can streamline the debugging process for common issues
- Structured debugging approaches like divide-and-conquer and hypothesis testing work well with AI
- Always verify AI's debugging suggestions with your own testing
- Root cause analysis is more valuable than symptom mitigation
- Debugging is a process of investigation, not just code fixing

Moving Forward

In the next chapter, we'll explore refactoring strategies with AI assistance, building on the debugging skills we've developed here to improve existing code rather than just fixing bugs.

`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNoYXB0ZXJzIn0= -->`{=html}

```{=html}
<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNoYXB0ZXJzIiwiYm9va0l0ZW1UeXBlIjoiY2hhcHRlciIsImJvb2tJdGVtTnVtYmVyIjoxMywiYm9va0l0ZW1GaWxlIjoiY2hhcHRlcnMvMTItcmVmYWN0b3Jpbmctc3RyYXRlZ2llcy5xbWQiLCJib29rSXRlbURlcHRoIjoxfQ== -->

192



13. Refactoring Strategies

Refactoring—improving code structure without changing its external
behavior—is a critical skill for maintaining healthy, adaptable software.
AI assistants can be powerful allies in identifying refactoring opportunities
and implementing improvements. This chapter explores intentional
approaches to refactoring with AI assistance.

13.1. When and Why to Refactor

13.1.1. Recognizing Refactoring Opportunities

Refactoring is most valuable in specific situations:

1. Code smells - Patterns in code that indicate deeper problems
2. Technical debt - Accumulated design or implementation shortcuts
3. Changing requirements - Evolving needs that strain existing

designs
4. Performance bottlenecks - Areas where optimization is needed
5. Duplication - Repeated code that could be consolidated
6. Complexity - Overly complicated logic that’s difficult to understand

AI assistants excel at identifying these opportunities, especially when
prompted to look for specific issues.

Example prompt:

193



13. Refactoring Strategies

Here's a section of our codebase that's becoming difficult to maintain:

```python
def process_customer_data(customer):

Calculate base price
if customer.tier == 'premium':

base_price = 99.99
elif customer.tier == 'standard':

base_price = 49.99
elif customer.tier == 'basic':

base_price = 19.99
else:

base_price = 29.99

Apply discounts
if customer.years > 5:

discount = 0.15
elif customer.years > 2:

discount = 0.10
elif customer.is_first_responder:

discount = 0.20
elif customer.is_teacher:

discount = 0.10
else:

discount = 0

Calculate final price
final_price = base_price * (1 - discount)

Generate output data
result = {

'customer_id': customer.id,
'name': customer.name,
'email': customer.email,

194

13.1. When and Why to Refactor

'price': final_price,
'discount': discount,
'tier': customer.tier,

}

return result

Can you identify refactoring opportunities in this code? What code smells
do you notice?

The Business Case for Refactoring

Refactoring is sometimes seen as unnecessary by non-technical stakeholders. AI can help articulate the business value:

Example prompt:

I need to make a case to my manager for refactoring our payment processing
module. The current code works, but it’s difficult to maintain and extend.

How can I effectively communicate the business value of this refactoring
effort? What specific metrics or outcomes should I highlight?

AI-Assisted Code Improvements

Identifying Refactoring Targets

AI can analyze code to identify specific improvement opportunities:

Example prompt:

195

13. Refactoring Strategies

Could you analyze this function and suggest potential refactoring im-
provements? Focus on maintainability, readability, and adherence to best
practices.

public List<Transaction> getTransactions(String userId, Date startDate, Date endDate,
String category, String merchantName,
Double minAmount, Double maxAmount,
boolean includeDeclined, String sortBy,
String sortDirection, int pageSize, int pageNum) {

List<Transaction> results = new ArrayList<>();
Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;

try {
conn = dataSource.getConnection();
StringBuilder sql = new StringBuilder("SELECT * FROM transactions WHERE user_id = ?");

List<Object> params = new ArrayList<>();
params.add(userId);

if (startDate != null) {
sql.append(" AND transaction_date >= ?");
params.add(startDate);

}

if (endDate != null) {
sql.append(" AND transaction_date <= ?");
params.add(endDate);

}

// 30+ more lines of similar parameter handling...

// Pagination and sorting logic

196

13.1. When and Why to Refactor

// More database handling code...

while (rs.next()) {
// Transform ResultSet to Transaction objects
// 20+ lines of mapping code...
results.add(transaction);

}
} catch (SQLException e) {

logger.error("Database error", e);
} finally {

// Close resources
if (rs != null) {

try { rs.close(); } catch (SQLException e) { logger.error("Error closing ResultSet", e); }
}
if (stmt != null) {

try { stmt.close(); } catch (SQLException e) { logger.error("Error closing Statement", e); }
}
if (conn != null) {

try { conn.close(); } catch (SQLException e) { logger.error("Error closing Connection", e); }
}

}

return results;
}

Suggesting Improved Designs

AI can propose architectural improvements:

Example prompt:

I have a monolithic class that handles user authentication, profile manage-

197

13. Refactoring Strategies

ment, and notification preferences. It’s become unwieldy at 500+ lines.

Based on the SOLID principles, how should I refactor this into more focused
classes? What would the new class structure look like?

Implementing Specific Refactorings

AI can implement common refactoring patterns:

Example prompt:

I’d like to apply the “Extract Method” refactoring to this code:

function calculateTotalPrice(items, customer) {
let subtotal = 0;
for (const item of items) {
subtotal += item.price * item.quantity;

}

let tax = 0;
if (customer.state === 'CA') {
tax = subtotal * 0.0725;

} else if (customer.state === 'NY') {
tax = subtotal * 0.045;

} else if (customer.state === 'TX') {
tax = subtotal * 0.0625;

} else {
tax = subtotal * 0.05;

}

let shipping = 0;
if (subtotal >= 100) {

198

13.1. When and Why to Refactor

shipping = 0;
} else if (customer.isPremium) {
shipping = 5.99;

} else {
shipping = 10.99;

}

return subtotal + tax + shipping;
}

Please extract methods for calculating the subtotal, tax, and shipping.

Measuring Impact of Refactoring

Refactoring should produce measurable improvements. AI can help identify metrics and assess results.

Quantitative Metrics

Example prompt:

I’m planning to refactor our API request handling code. What quantitative
metrics should I measure before and after refactoring to demonstrate the
impact?

AI might suggest:

- **Performance metrics**: Response time, throughput, resource utilization
- **Code metrics**: Cyclomatic complexity, lines of code, method length
- **Testing metrics**: Test coverage, test execution time
- **Maintenance metrics**: Time to implement new features, bug fix duration

199

13. Refactoring Strategies

- **Error rates**: Exceptions, crashes, incorrect results

Qualitative Assessment

Example prompt:

Beyond quantitative metrics, what qualitative factors should I consider
when evaluating the success of my refactoring efforts?

AI might suggest:

- **Developer feedback**: Team assessment of code clarity and maintainability
- **Onboarding impact**: How quickly new team members understand the code
- **Flexibility**: Ease of implementing new requirements
- **Documentation needs**: Reduction in necessary explanation
- **Knowledge distribution**: Less reliance on specific team members

Maintaining Functionality During Refactoring

One of the most critical aspects of refactoring is preserving existing behavior.

Test-Driven Refactoring

Example prompt:

I want to refactor this payment processing function, but I need to ensure
I don’t break existing functionality. What testing approach would you
recommend?

Here’s the current function:

200

13.1. When and Why to Refactor

def process_payment(order_id, card_details, amount):
Implementation details...

What types of tests should I write before refactoring, and how should I
structure the refactoring process to minimize risk?

Incremental Refactoring Approaches

Example prompt:

I need to refactor a large legacy class (800+ lines) that handles multiple
responsibilities. What’s the most effective step-by-step approach to break
this down safely?

AI might suggest:

1. **Create a comprehensive test suite** first
2. **Identify clear boundaries** between responsibilities
3. **Extract one responsibility at a time**, starting with the most independent
4. **Introduce interfaces** to define clear contracts
5. **Refactor clients** to use the new interfaces
6. **Run tests after each incremental change**

Case Studies

Case Study 1: Simplifying Complex Conditionals

Original Code:

```javascript

201



13. Refactoring Strategies

function calculateDiscount(customer, order) {
let discount = 0;

if (customer.type === 'regular') {
if (order.total > 100) {
if (customer.years > 2) {
discount = 0.15;

} else {
discount = 0.10;

}
} else if (order.total > 50) {
if (customer.years > 2) {
discount = 0.10;

} else {
discount = 0.05;

}
}

} else if (customer.type === 'premium') {
if (order.total > 100) {
discount = 0.20;

} else if (order.total > 50) {
discount = 0.15;

} else {
discount = 0.10;

}
} else if (customer.type === 'vip') {
discount = 0.25;

}

if (order.items.length > 10) {
discount += 0.05;

}

return discount;

202



13.1. When and Why to Refactor

}

Refactoring Request:

Human prompt:

This discount calculation function has become difficult to understand and maintain due to nested conditionals. How would you refactor it to improve readability and maintainability?

AI response: > I’ll refactor this function to simplify the nested condition-
als using a few strategies: > > 1. Use early returns for special cases > 2.
Extract specialized functions for different customer types > 3. Use lookup
tables for rules-based logic > 4. Implement a more declarative approach
> > Here’s the refactored version: > > javascript > function
calculateDiscount(customer, order) { > // Start with
base discount and add volume discount later if applicable
> const baseDiscount = calculateBaseDiscount(customer,
order); > const volumeDiscount = order.items.length > 10
? 0.05 : 0; > > return baseDiscount + volumeDiscount;
> } > > function calculateBaseDiscount(customer, order) { >
// Special case for VIP customers > if (customer.type ===
'vip') { > return 0.25; > } > > // Use lookup
table for discount rules > const discountRules = { >
regular: { > tier1: { threshold: 100, loyal: 0.15,
new: 0.10 }, > tier2: { threshold: 50, loyal: 0.10,
new: 0.05 }, > tier3: { threshold: 0, loyal: 0, new:
0 } > }, > premium: { > tier1: { threshold:
100, discount: 0.20 }, > tier2: { threshold: 50,
discount: 0.15 }, > tier3: { threshold: 0, discount:
0.10 } > } > }; > > // Handle regular customers
> if (customer.type === 'regular') { > const isLoyal =
customer.years > 2; > const customerRates = discountRules.regular;
> > if (order.total > customerRates.tier1.threshold)
{ > return isLoyal ? customerRates.tier1.loyal :

203



13. Refactoring Strategies

customerRates.tier1.new; > } else if (order.total >
customerRates.tier2.threshold) { > return isLoyal ?
customerRates.tier2.loyal : customerRates.tier2.new; > }
> return 0; > } > > // Handle premium customers >
if (customer.type === 'premium') { > const premiumRates
= discountRules.premium; > > if (order.total >
premiumRates.tier1.threshold) { > return premiumRates.tier1.discount;
> } else if (order.total > premiumRates.tier2.threshold)
{ > return premiumRates.tier2.discount; > } >
return premiumRates.tier3.discount; > } > > // Default
case - no discount > return 0; > } > > > Benefits of this
refactoring: > > 1. Improved readability: The main function is now
much shorter and clearer > 2. Separation of concerns: Different
discount calculations are separated > 3. Configurability: Discount
rules are organized in a data structure that could easily be moved to a
configuration file > 4. Maintainability: Adding new customer types
or rules is more straightforward > 5. Testability: Each function can
be tested independently > > For even further improvement, you could
refactor this to use a more object-oriented approach with strategy patterns,
or use a rules engine for complex discount logic.

13.1.2. Case Study 2: Reducing Duplication

Original Code:

class UserService:
def get_user_by_id(self, user_id):

connection = database.connect()
cursor = connection.cursor()
cursor.execute("SELECT * FROM users WHERE id = %s", (user_id,))
result = cursor.fetchone()
cursor.close()
connection.close()

204



13.1. When and Why to Refactor

if result:
return {

'id': result[0],
'username': result[1],
'email': result[2],
'created_at': result[3]

}
return None

def get_user_by_email(self, email):
connection = database.connect()
cursor = connection.cursor()
cursor.execute("SELECT * FROM users WHERE email = %s", (email,))
result = cursor.fetchone()
cursor.close()
connection.close()

if result:
return {

'id': result[0],
'username': result[1],
'email': result[2],
'created_at': result[3]

}
return None

def get_user_by_username(self, username):
connection = database.connect()
cursor = connection.cursor()
cursor.execute("SELECT * FROM users WHERE username = %s", (username,))
result = cursor.fetchone()
cursor.close()
connection.close()

205



13. Refactoring Strategies

if result:
return {

'id': result[0],
'username': result[1],
'email': result[2],
'created_at': result[3]

}
return None

Refactoring Request:

Human prompt:

This UserService class has significant duplication in its methods. How would you refactor it to reduce repetition while maintaining the same functionality?

AI response: > There’s significant duplication in this UserService
class. The three methods follow the same pattern but just differ in the
query condition. Let’s refactor to eliminate this duplication: > > python
> class UserService: > def __get_user_by_query(self,
query, params): > """ > Private helper
method to execute a query and return user data. > >
Args: > query: SQL query with placeholders
> params: Parameters to substitute in the query
> > Returns: > User dict
or None if not found > """ > connection =
None > cursor = None > > try: >
connection = database.connect() > cursor =
connection.cursor() > cursor.execute(query,
params) > result = cursor.fetchone() > >
if result: > return { > 'id':
result[0], > 'username': result[1], >
'email': result[2], > 'created_at':

206



13.2. Key Takeaways

result[3] > } > return None >
> finally: > # Ensure resources are
closed even if an exception occurs > if cursor:
> cursor.close() > if connection:
> connection.close() > > def get_user_by_id(self,
user_id): > """Get a user by their ID.""" > return
self.__get_user_by_query( > "SELECT * FROM users
WHERE id = %s", > (user_id,) > ) >
> def get_user_by_email(self, email): > """Get a
user by their email address.""" > return self.__get_user_by_query(
> "SELECT * FROM users WHERE email = %s", >
(email,) > ) > > def get_user_by_username(self,
username): > """Get a user by their username.""" >
return self.__get_user_by_query( > "SELECT *
FROM users WHERE username = %s", > (username,) >
) > > > Key improvements in this refactoring: > > 1. Extracted
common code into a private helper method __get_user_by_query > 2.
Improved error handling with a try/finally block to ensure resources are
properly closed > 3. Added docstrings to improve code documentation
> 4. Made public methods concise and focused on their specific
responsibilities > 5. Reduced duplication significantly - the code is now
much more maintainable > > Further improvements could include: > > -
Creating a User model class instead of returning dictionaries > - Using a
context manager or connection pool for database connections > - Adding
proper exception handling and logging > - Implementing a data access
layer or repository pattern > > This refactoring maintains exactly the
same functionality while making the code much more maintainable.

13.2. Key Takeaways

• Refactoring is about improving code structure without changing
functionality

207



13. Refactoring Strategies

• AI assistants excel at identifying refactoring opportunities and sug-
gesting improvements

• Measure the impact of refactoring with both quantitative and quali-
tative metrics

• Preserve functionality during refactoring through comprehensive
testing

• Common refactoring patterns like extracting methods and simplifying
conditionals can be effectively implemented with AI assistance

• Incremental, test-driven approaches minimize risk during refactoring

13.3. Moving Forward

In the next chapter, we’ll explore case studies that demonstrate the complete
intentional prompting methodology in real-world situations, including both
debugging and refactoring as part of larger development efforts.

208



14. Case Studies

In this chapter, we’ll explore comprehensive case studies that demonstrate
intentional prompting principles applied to real-world programming sce-
narios. These case studies illustrate how the six-step methodology and
intentional prompting techniques come together to solve complex problems
effectively.

209



14. Case Studies

Figure 14.1.: Before and After Case Study

14.1. Case Study 1: Building a Data Analysis Pipeline

14.1.1. The Problem

A research team needs to analyze a large dataset of customer transactions
to identify purchasing patterns. They have a CSV file with millions of
records containing transaction data including:

• Transaction ID
• Customer ID

210



14.1. Case Study 1: Building a Data Analysis Pipeline

• Date and time
• Product categories
• Purchase amount
• Payment method
• Store location

The team needs to: 1. Clean and preprocess the data 2. Identify the most
frequently purchased product combinations 3. Analyze how purchasing
patterns change over time 4. Visualize the results

14.1.2. The Intentional Prompting Approach

14.1.2.1. Step 1: Restate the Problem

Human prompt:

I need to build a data analysis pipeline to process customer transaction data. Let me restate the problem:

We have a large CSV file (millions of rows) with transaction data including transaction ID, customer ID, date/time, product categories, purchase amount, payment method, and store location.

We need to:
1. Clean the data (handle missing values, standardize formats)
2. Find frequently purchased product combinations
3. Analyze how purchasing patterns change over time
4. Create visualizations of the results

Is this understanding correct, and are there any important aspects I've missed?

AI response: > Your understanding is correct! Your restatement captures
the main requirements of building a data analysis pipeline for transaction
data. Here are a few additional considerations that might be important: >
> 1. Data volume handling: With millions of rows, you’ll need efficient
processing techniques that can handle large datasets. This might involve

211



14. Case Studies

streaming processing, chunking the data, or using distributed computing
frameworks. > > 2. Performance considerations: Some operations like
finding product combinations might be computationally expensive. You
might need optimization strategies. > > 3. Data privacy: Transaction
data may contain sensitive information. You might need to anonymize or
handle the data according to relevant privacy regulations. > > 4. Output
format: It’s worth considering what format the final results should be in
(static reports, interactive dashboards, raw data for further analysis, etc.).
> > 5. Repeatability: Will this be a one-time analysis or something that
needs to be run regularly? If it’s the latter, the pipeline should be designed
for automation and reproducibility. > > 6. Data quality assessment:
Beyond basic cleaning, you might want to include statistical analysis to
identify outliers or anomalies that could skew the results. > > With these
considerations in mind, your restatement effectively captures the core of
the problem.

14.1.2.2. Step 2: Identify Input and Output

Human prompt:

Let me define the specific inputs and outputs for this pipeline:

INPUTS:
- A CSV file with the following columns:

* transaction_id (string): Unique identifier for each transaction
* customer_id (string): Identifier for the customer
* timestamp (datetime): Date and time of the transaction
* product_categories (string): Comma-separated list of purchased product categories
* amount (float): Purchase amount in dollars
* payment_method (string): Method of payment
* store_location (string): Location identifier for the store

OUTPUTS:

212



14.1. Case Study 1: Building a Data Analysis Pipeline

1. Cleaned dataset (CSV or Parquet)
2. Top 20 most frequently purchased product combinations (CSV)
3. Monthly purchasing trends by product category (CSV)
4. Visualizations:

* Bar chart of top product combinations
* Line chart showing purchasing trends over time
* Heatmap of purchase patterns by day of week and hour

Do these specifications adequately cover what's needed for the pipeline?

AI response: > Your input and output specifications provide a clear
framework for the pipeline. They’re comprehensive and specific, which
is excellent for guiding the implementation. Here are a few additional
points to consider: > > For inputs: > > 1. File format details:
You might want to specify if there are any header rows, quoting patterns,
or delimiter specifications for the CSV. > > 2. Expected data sizes:
Approximate size of the file (GB) and typical row count can help plan for
resource requirements. > > 3. Data quality expectations: Are there
known issues with the data? (e.g., are missing values expected in certain
columns, are there known inconsistencies in formatting) > > For outputs:
> > 1. Definition of “product combinations”: Clarify whether this
means products purchased together in a single transaction, or products
frequently purchased by the same customer across different transactions. >
> 2. Granularity of time analysis: You specified monthly trends, but
you might also want daily or weekly analysis depending on the business
needs. > > 3. Additional metrics: Consider adding: > - Average
basket size (number of items and monetary value) > - Payment method
distribution > - Store location performance comparison > > 4. Output file
specifications: For the CSV outputs, specify whether headers should be
included and what the column structure should be. > > 5. Visualization
formats: Specify the file formats for visualizations (PNG, PDF, interactive
HTML, etc.) > > Overall, your specifications are solid and provide a good
foundation for the implementation. These additional considerations can
help make the requirements even more precise.

213



14. Case Studies

14.1.2.3. Step 3: Work by Hand

In this step, we’d manually process a small sample of the data to understand
the analysis process. For brevity, we’ll focus on a simple example of finding
product combinations.

Human work:

Sample data (5 transactions):

transaction_id,customer_id,timestamp,product_categories,amount,payment_method,store_location
T1001,C1,2023-01-15 14:30:00,"electronics,accessories",120.50,credit,store1
T1002,C2,2023-01-15 15:45:00,"groceries,dairy,produce",65.75,debit,store2
T1003,C1,2023-01-17 10:15:00,"electronics,videogames",210.99,credit,store1
T1004,C3,2023-01-18 09:30:00,"dairy,produce,meat",95.30,cash,store2
T1005,C2,2023-01-20 16:20:00,"groceries,dairy,bakery",45.60,debit,store2

To find product combinations: 1. Split each transaction’s product_cate-
gories field 2. Generate all pair combinations 3. Count frequency of each
pair

For T1001: [“electronics”, “accessories”] Pairs: [(“electronics”, “acces-
sories”)]

For T1002: [“groceries”, “dairy”, “produce”] Pairs: [(“groceries”, “dairy”),
(“groceries”, “produce”), (“dairy”, “produce”)]

…and so on for all transactions.

Counting frequencies: - (“dairy”, “produce”): 2 - (“groceries”, “dairy”): 2
- All others: 1

Most frequent combinations: (“dairy”, “produce”) and (“groceries”,
“dairy”)

Human prompt:

214



14.1. Case Study 1: Building a Data Analysis Pipeline

I've worked through a small sample of the data manually to understand the process of finding product combinations. Here's what I did:

[The manual work shown above]

From this manual process, I can see that we need to:
1. Parse the comma-separated product categories
2. Generate all possible pairs from each transaction
3. Count occurrences of each pair across all transactions
4. Sort by frequency to find the most common combinations

This approach works for pairs, but for larger combinations, we might need association rule mining algorithms like Apriori. Does this manual approach seem correct, and are there any important considerations I'm missing?

AI response: > Your manual approach for finding product combinations is
sound! You’ve correctly identified the key steps for analyzing product pairs.
Here are some important considerations and extensions: > > Validations
and extensions: > > 1. Multiple levels of combinations: As you
noted, beyond pairs, you might want to find triplets or larger combinations.
Apriori or FP-Growth algorithms would indeed be appropriate for this.
> > 2. Association metrics: Beyond just frequency count, consider
calculating: > - Support (frequency of the combination relative to total
transactions) > - Confidence (likelihood of Y when X is purchased) > - Lift
(how much more likely Y is purchased when X is purchased, compared to
normal) > > 3. Performance for large datasets: The naive approach of
generating all combinations can be computationally expensive for transac-
tions with many items. For the full dataset: > - Consider using optimized
libraries like MLxtend or efficient implementations of Apriori > - You might
need to set a minimum support threshold to filter out rare combinations
early > > 4. Handling duplicates: If a customer buys multiple items
in the same category in one transaction (e.g., two electronics items), your
current approach correctly treats “electronics” as appearing once in that
transaction. > > 5. Time-based analysis: You might want to see if
popular combinations change over time (seasonal patterns, etc.) > > Your
manual process demonstrates a good understanding of the approach. For

215



14. Case Studies

implementation at scale, you’ll want to leverage existing libraries rather
than building the combination generator from scratch, especially as you
move beyond pairs to larger combinations.

14.1.2.4. Step 4: Write Pseudocode

Based on the manual exploration, we can now outline the solution in
pseudocode.

Human prompt:

Based on my manual exploration, let me write pseudocode for the data analysis pipeline:

FUNCTION clean_data(input_file): data = READ_CSV(input_file)

# Handle missing values
FILL_MISSING(data.product_categories, "unknown")
FILL_MISSING(data.payment_method, "unknown")
FILL_MISSING(data.store_location, "unknown")
DROP_ROWS_WHERE(data.transaction_id IS NULL OR data.timestamp IS NULL)

# Standardize formats
data.timestamp = CONVERT_TO_DATETIME(data.timestamp)
data.amount = CONVERT_TO_FLOAT(data.amount)

RETURN data

FUNCTION find_product_combinations(data, min_support=0.001):
# Initialize counter for product combinations combination_counts =
EMPTY_COUNTER() total_transactions = COUNT_ROWS(data)

216



14.1. Case Study 1: Building a Data Analysis Pipeline

FOR each row IN data:
products = SPLIT(row.product_categories, ",")
product_combinations = GENERATE_COMBINATIONS(products, size=2)

FOR each combination IN product_combinations:
INCREMENT combination_counts[combination]

# Convert counts to support values
combination_support = EMPTY_DICT()
FOR combination, count IN combination_counts:

combination_support[combination] = count / total_transactions

# Filter by minimum support
frequent_combinations = FILTER(combination_support >= min_support)

# Sort by support (descending)
frequent_combinations = SORT_DESCENDING(frequent_combinations)

RETURN frequent_combinations

FUNCTION analyze_time_patterns(data): # Add temporal
features data[‘month’] = EXTRACT_MONTH(data.timestamp)
data[‘year’] = EXTRACT_YEAR(data.timestamp) data[‘day_of_week’]
= EXTRACT_WEEKDAY(data.timestamp) data[‘hour’] = EX-
TRACT_HOUR(data.timestamp)

# Group by month and product categories
monthly_trends = GROUP_BY(data, ['year', 'month', 'product_categories'],

AGGREGATE(COUNT(transaction_id), SUM(amount)))

# Group by day of week and hour
hourly_patterns = GROUP_BY(data, ['day_of_week', 'hour', 'product_categories'],

AGGREGATE(COUNT(transaction_id)))

217



14. Case Studies

RETURN monthly_trends, hourly_patterns

FUNCTION create_visualizations(product_combinations, monthly_trends,
hourly_patterns): # Create bar chart of top combinations bar_chart =
PLOT_BAR_CHART(TOP_N(product_combinations, 20))

# Create line chart of monthly trends
line_chart = PLOT_LINE_CHART(monthly_trends)

# Create heatmap of purchase patterns
heatmap = PLOT_HEATMAP(hourly_patterns)

RETURN bar_chart, line_chart, heatmap

FUNCTION main(input_file, output_dir): # Clean data cleaned_data
= clean_data(input_file) SAVE_CSV(cleaned_data, output_dir +
“/cleaned_data.csv”)

# Find frequent product combinations
product_combinations = find_product_combinations(cleaned_data)
SAVE_CSV(TOP_N(product_combinations, 20), output_dir + "/top_combinations.csv")

# Analyze time patterns
monthly_trends, hourly_patterns = analyze_time_patterns(cleaned_data)
SAVE_CSV(monthly_trends, output_dir + "/monthly_trends.csv")

# Create visualizations
bar_chart, line_chart, heatmap = create_visualizations(

product_combinations, monthly_trends, hourly_patterns)
SAVE_PNG(bar_chart, output_dir + "/top_combinations.png")
SAVE_PNG(line_chart, output_dir + "/monthly_trends.png")
SAVE_PNG(heatmap, output_dir + "/hourly_patterns.png")

218



14.1. Case Study 1: Building a Data Analysis Pipeline

Does this pseudocode cover all the necessary steps for our data analysis pipeline? Are there any inefficiencies or improvements you would suggest?

AI response: > Your pseudocode provides a good framework for the
data analysis pipeline! It covers the main steps and follows a logical
flow. Here are some suggestions for improvements and considerations:
> > Efficiency improvements: > > 1. Chunked processing:
For millions of rows, you might want to process the data in chunks
to avoid memory issues: > > FUNCTION clean_data(input_file): >
initialize empty dataframe for cleaned_data > FOR each
chunk IN READ_CSV_IN_CHUNKS(input_file, chunk_size=100000): >
# Apply cleaning operations to chunk > cleaned_chunk
= CLEAN_CHUNK(chunk) > APPEND(cleaned_data, cleaned_chunk)
> RETURN cleaned_data > > > 2. Optimized product com-
bination generation: The current approach might be inefficient for
transactions with many products: > > # Add a maximum combination
size parameter > FUNCTION find_product_combinations(data,
min_support=0.001, max_combination_size=2): > # Use an
efficient algorithm like Apriori instead of manual combination
generation > frequent_itemsets = APRIORI_ALGORITHM( >
data.product_categories, > min_support=min_support,
> max_length=max_combination_size > ) > RETURN
frequent_itemsets > > > Additional considerations: > > 1.
Data validation: Add checks for data quality: > > FUNCTION
clean_data(input_file): > # ...existing code... > >
# Add data validation > LOG_STATS(COUNT_MISSING_VALUES(data))
> LOG_STATS(COUNT_UNIQUE_VALUES(data.product_categories))
> VALIDATE_NUMERIC_RANGE(data.amount, min=0) > >
# ...rest of function... > > > 2. Error handling: Add error
handling for robust processing: > > FUNCTION main(input_file,
output_dir): > TRY: > # ...existing code... >
CATCH FileNotFoundError: > LOG_ERROR("Input file not
found") > CATCH MemoryError: > LOG_ERROR("Insufficient

219



14. Case Studies

memory, try reducing chunk size") > FINALLY: > CLEAN_UP_TEMP_FILES()
> > > 3. Parallelization: For large datasets, consider paral-
lel processing: > > FUNCTION find_product_combinations(data,
min_support=0.001): > # Split data into partitions >
partitions = SPLIT_DATA(data, num_partitions=NUM_CORES) >
> # Process partitions in parallel > partial_results
= PARALLEL_MAP(PROCESS_PARTITION, partitions) > > #
Combine results > combined_results = COMBINE_PARTIAL_RESULTS(partial_results)
> RETURN combined_results > > > 4. Progress tracking: For
long-running operations, add progress tracking: > > FUNCTION
clean_data(input_file): > total_chunks = ESTIMATE_TOTAL_CHUNKS(input_file,
chunk_size) > FOR i, chunk IN ENUMERATE(READ_CSV_IN_CHUNKS(input_file)):
> LOG_PROGRESS(f"Processing chunk {i}/{total_chunks}")
> # ...process chunk... > > > These improvements would
make your pipeline more robust, efficient, and suitable for large-scale
data processing. Your current pseudocode is a great starting point, and
these suggestions help address some common challenges in real-world data
processing.

14.1.2.5. Step 5: Convert to Code

Now let’s implement the solution in Python, focusing on the product
combination analysis.

Human prompt:

Let's convert the pseudocode for finding product combinations into Python code using pandas and mlxtend for the Apriori algorithm:

```python
import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules
from mlxtend.preprocessing import TransactionEncoder
import numpy as np

220

14.1. Case Study 1: Building a Data Analysis Pipeline

def find_product_combinations(data, min_support=0.001, max_len=3):
"""
Find frequent product combinations using the Apriori algorithm.

Args:
data (pd.DataFrame): DataFrame containing transaction data
min_support (float): Minimum support threshold (default: 0.001)
max_len (int): Maximum combination size (default: 3)

Returns:
pd.DataFrame: DataFrame with frequent itemsets and their support

"""
Extract product categories and split into lists
transactions = data['product_categories'].str.split(',').tolist()

Convert transactions to one-hot encoded format
te = TransactionEncoder()
te_ary = te.fit_transform(transactions)
df_encoded = pd.DataFrame(te_ary, columns=te.columns_)

Apply Apriori algorithm
frequent_itemsets = apriori(

df_encoded,
min_support=min_support,
max_len=max_len,
use_colnames=True

)

Filter itemsets with more than one item
frequent_itemsets = frequent_itemsets[frequent_itemsets['itemsets'].apply(lambda x: len(x) > 1)]

Sort by support (descending)
frequent_itemsets = frequent_itemsets.sort_values('support', ascending=False)

221

14. Case Studies

Format the output
result = pd.DataFrame({

'combination': frequent_itemsets['itemsets'].apply(lambda x: ', '.join(list(x))),
'support': frequent_itemsets['support'],
'transaction_count': (frequent_itemsets['support'] * len(data)).astype(int)

})

return result

def clean_data(file_path, chunk_size=100000):
"""
Clean and preprocess the transaction data.

Args:
file_path (str): Path to the CSV file
chunk_size (int): Number of rows to process at once

Returns:
pd.DataFrame: Cleaned and preprocessed data

"""
Initialize an empty list to store chunks
chunks = []

Process file in chunks
for chunk in pd.read_csv(file_path, chunksize=chunk_size):

Fill missing values
chunk['product_categories'] = chunk['product_categories'].fillna('unknown')
chunk['payment_method'] = chunk['payment_method'].fillna('unknown')
chunk['store_location'] = chunk['store_location'].fillna('unknown')

Drop rows with missing essential data
chunk = chunk.dropna(subset=['transaction_id', 'timestamp'])

222

14.1. Case Study 1: Building a Data Analysis Pipeline

Standardize formats
chunk['timestamp'] = pd.to_datetime(chunk['timestamp'])
chunk['amount'] = pd.to_numeric(chunk['amount'], errors='coerce')

Append the cleaned chunk
chunks.append(chunk)

Combine all chunks
cleaned_data = pd.concat(chunks, ignore_index=True)

return cleaned_data

Is this implementation correct and efficient? Are there any issues or
optimizations I should consider?

AI response:
> Your implementation is solid and follows good practices for processing large datasets! Here are some thoughts and potential optimizations:
>
> **Strengths:**
>
> 1. Using `chunksize` for reading large CSV files is excellent
> 2. The `mlxtend` library is a good choice for implementing Apriori efficiently
> 3. The code is well-structured with clear documentation
> 4. You've added appropriate data cleaning steps
>
> **Potential improvements:**
>
> 1. **Memory optimization for very large datasets:**
>
> ```python
> def find_product_combinations(data, min_support=0.001, max_len=3):
> # For extremely large datasets, we might want to sample first

223

14. Case Studies

> if len(data) > 10_000_000: # Arbitrary threshold
> data = data.sample(n=10_000_000, random_state=42)
> print(f"Data sampled to {len(data)} rows due to size")
>
> # Rest of your function...
> ```
>
> 2. **Error handling and logging:**
>
> ```python
> def clean_data(file_path, chunk_size=100000):
> chunks = []
> total_rows = 0
> invalid_rows = 0
>
> try:
> for i, chunk in enumerate(pd.read_csv(file_path, chunksize=chunk_size)):
> initial_rows = len(chunk)
> total_rows += initial_rows
>
> # Your cleaning code...
>
> invalid_rows += initial_rows - len(chunk)
> chunks.append(chunk)
>
> if i % 10 == 0:
> print(f"Processed {i+1} chunks ({total_rows} rows)...")
>
> print(f"Cleaning complete. Processed {total_rows} rows, removed {invalid_rows} invalid rows.")
> except Exception as e:
> print(f"Error during data cleaning: {str(e)}")
> raise
> ```
>

224

14.1. Case Study 1: Building a Data Analysis Pipeline

> 3. **Performance optimization for Apriori on sparse data:**
>
> ```python
> # If your dataset has many distinct products but each transaction has few,
> # use sparse representation for better performance
> from scipy.sparse import csr_matrix
>
> te_ary = te.fit_transform(transactions)
> sparse_te_ary = csr_matrix(te_ary)
>
> # Then use the sparse matrix with apriori if mlxtend supports it
> # Otherwise, for very sparse data, consider alternative implementations
> ```
>
> 4. **Data validation before processing:**
>
> ```python
> def find_product_combinations(data, min_support=0.001, max_len=3):
> # Validate input data
> if 'product_categories' not in data.columns:
> raise ValueError("DataFrame must contain 'product_categories' column")
>
> # Check for empty values post-cleaning
> empty_cats = data['product_categories'].isin(['', 'unknown']).sum()
> if empty_cats > 0:
> print(f"Warning: {empty_cats} rows have empty or unknown product categories")
>
> # Rest of your function...
> ```
>
> 5. **Consider adding time-based analysis:**
>
> ```python
> def find_seasonal_combinations(data, time_period='month'):

225

14. Case Studies

> """Find how product combinations vary over time."""
> # Add time period column
> if time_period == 'month':
> data['period'] = data['timestamp'].dt.to_period('M')
> elif time_period == 'quarter':
> data['period'] = data['timestamp'].dt.to_period('Q')
>
> periods = data['period'].unique()
> results = {}
>
> for period in periods:
> period_data = data[data['period'] == period]
> period_combos = find_product_combinations(period_data)
> results[period] = period_combos.head(10) # Top 10 for each period
>
> return results
> ```
>
> Overall, your implementation is well-designed for the task at hand. These suggestions are refinements that might be helpful in specific scenarios, but your core approach is sound!

Step 6: Test with Data

For this step, we would test our implementation with real data, starting with a small sample and progressively increasing to the full dataset.

Human prompt:

Let’s test our implementation with a small sample dataset first:

import pandas as pd
import numpy as np
from datetime import datetime, timedelta

Create sample data

226

14.1. Case Study 1: Building a Data Analysis Pipeline

np.random.seed(42)
n_samples = 1000

Generate transaction IDs
transaction_ids = [f'T{i+1:04d}' for i in range(n_samples)]

Generate customer IDs (100 unique customers)
customer_ids = [f'C{np.random.randint(1, 101):03d}' for _ in range(n_samples)]

Generate timestamps (last 90 days)
base_date = datetime.now() - timedelta(days=90)
timestamps = [base_date + timedelta(days=np.random.randint(0, 90),

hours=np.random.randint(0, 24),
minutes=np.random.randint(0, 60))

for _ in range(n_samples)]

Product categories
categories = ['electronics', 'accessories', 'clothing', 'shoes', 'books',

'groceries', 'dairy', 'produce', 'meat', 'bakery', 'beverages',
'snacks', 'beauty', 'health', 'kitchen', 'toys', 'sports',
'automotive', 'garden', 'furniture']

Generate product categories (1-4 categories per transaction)
product_categories = []
for _ in range(n_samples):

n_cats = np.random.randint(1, 5)
cats = np.random.choice(categories, size=n_cats, replace=False)
product_categories.append(','.join(cats))

Generate amounts
amounts = np.random.uniform(10, 500, n_samples).round(2)

Payment methods

227

14. Case Studies

payment_methods = np.random.choice(['credit', 'debit', 'cash', 'mobile'],
size=n_samples,
p=[0.4, 0.3, 0.2, 0.1])

Store locations
store_locations = np.random.choice(['store1', 'store2', 'store3', 'online'],

size=n_samples,
p=[0.3, 0.3, 0.2, 0.2])

Create DataFrame
sample_data = pd.DataFrame({

'transaction_id': transaction_ids,
'customer_id': customer_ids,
'timestamp': timestamps,
'product_categories': product_categories,
'amount': amounts,
'payment_method': payment_methods,
'store_location': store_locations

})

Save to CSV
sample_data.to_csv('sample_transactions.csv', index=False)

Test our implementation
1. Find product combinations
results = find_product_combinations(sample_data, min_support=0.01, max_len=3)
print(f"Found {len(results)} frequent product combinations")
print("\nTop 10 product combinations:")
print(results.head(10))

2. Check for issues or unexpected results
print("\nData statistics:")
print(f"Total transactions: {len(sample_data)}")

228

14.1. Case Study 1: Building a Data Analysis Pipeline

print(f"Unique product categories: {len(set(','.join(product_categories).split(',')))}")
unique_combos = set()
for cats in product_categories:

cat_list = cats.split(',')
for i in range(len(cat_list)):

for j in range(i+1, len(cat_list)):
unique_combos.add(tuple(sorted([cat_list[i], cat_list[j]])))

print(f"Unique product pairs in data: {len(unique_combos)}")

What issues might we encounter when scaling to the full dataset, and how
should we address them?

AI response:
> Your test approach with synthetic data is excellent for validating the implementation! Here are the potential issues you might encounter when scaling to the full dataset and strategies to address them:
>
> **Scaling Issues and Solutions:**
>
> 1. **Memory Consumption**
> - **Issue**: The TransactionEncoder creates a one-
hot encoded matrix which can be extremely memory-intensive for datasets with millions of transactions and many unique products.
> - **Solution**:
> - Process in batches based on time periods (e.g., analyze one month at a time)
> - Use sampling techniques for initial analysis
> - Implement a more memory-efficient version of Apriori or consider alternatives like FP-
Growth
> - Use sparse matrix representations where possible
>
> 2. **Computation Time**
> - **Issue**: Apriori's performance degrades significantly with low support thresholds on large datasets.
> - **Solution**:
> - Start with higher minimum support values and gradually decrease
> - Use parallel processing libraries (e.g., Dask, PySpark)

229

14. Case Studies

> - Implement an incremental approach that processes data in chunks and merges results
> - Consider using GPU-accelerated implementations for very large datasets
>
> 3. **Long Tail of Infrequent Items**
> - **Issue**: With millions of transactions, you might get thousands of combinations with low support.
> - **Solution**:
> - Focus on combinations with higher lift or confidence scores
> - Implement filtering for statistically significant associations
> - Group similar products into categories for higher-
level analysis
>
> 4. **Data Quality at Scale**
> - **Issue**: Large datasets often have more varied quality issues that become apparent only at scale.
> - **Solution**:
> - Implement more robust data cleaning steps
> - Add comprehensive logging of anomalies
> - Create data quality dashboards to monitor issues
>
> 5. **Time-Based Changes**
> - **Issue**: Product associations may change over time, and analyzing everything together might obscure patterns.
> - **Solution**:
> - Implement time-window analysis
> - Compare associations across different time periods
> - Look for emerging or declining associations
>
> **Implementation Improvements for Scale:**
>
> ```python
> # For very large datasets, consider this approach:
>
> def analyze_large_dataset(file_path, output_dir):
> # 1. First pass: Get data statistics and sample
> print("First pass: Collecting statistics...")
> stats = collect_data_stats(file_path)

230

14.1. Case Study 1: Building a Data Analysis Pipeline

>
> # 2. Determine optimal processing approach based on stats
> if stats['total_rows'] > 10_000_000:
> print("Very large dataset detected. Using distributed processing...")
> # Initialize Dask or Spark
> import dask.dataframe as dd
> ddf = dd.read_csv(file_path)
> # Process with distributed framework
> else:
> print("Processing with pandas...")
> # Process with your current approach
>
> # 3. Use progressive sampling for quick insights
> sample_sizes = [10000, 100000, 1000000]
> for size in sample_sizes:
> if size > stats['total_rows']:
> continue
> print(f"Analyzing sample of {size} transactions...")
> sample = get_stratified_sample(file_path, size)
> # Run analysis on progressively larger samples
> results = find_product_combinations(sample)
> save_results(results, f"{output_dir}/sample_{size}_results.csv")
>
> # 4. Full analysis with optimized parameters
> print("Running full analysis with optimized parameters...")
> # Use parameters learned from sample analysis
> full_results = process_in_time_windows(file_path)
>
> return full_results
> ```
>
> Your test setup is well-designed. When scaling to millions of rows, implementing these strategies will help manage both memory consumption and computation time while still extracting valuable insights from the data.

Lessons Learned

231

14. Case Studies

This case study demonstrates several key intentional prompting principles:

1. **Thorough problem restatement** helped identify additional considerations beyond the basic requirements
2. **Detailed input/output specification** clarified the exact needs of the pipeline
3. **Manual exploration** of a small data sample provided crucial insights into the required algorithms
4. **Pseudocode development** allowed for structural planning before implementation
5. **Implementation with AI assistance** incorporated best practices and optimizations
6. **Testing with synthetic data** verified the approach before scaling to the full dataset

The intentional prompting methodology led to a solution that was:
- Efficient for large-scale data processing
- Robust to data quality issues
- Flexible enough to handle various analysis requirements
- Well-tested before deployment to the full dataset

Case Study 2: Building a Weather Dashboard

The Problem

A developer needs to build a weather dashboard application in Python. The application should:

1. Utilize a weather data module to retrieve current and forecast information
2. Process and display weather data in a user-friendly interface
3. Allow users to search for different locations
4. Provide visualizations of weather trends

The Intentional Prompting Approach

Step 1: Restate the Problem

Human prompt:

I need to create a weather dashboard in Python that uses a provided

232

14.1. Case Study 1: Building a Data Analysis Pipeline

module to access weather data and displays it in a user-friendly interface.
Can you help me restate this problem more clearly to ensure I understand
all requirements?

AI response:
> This problem involves creating a Python application that:
> 1. Utilises an existing weather data module to retrieve weather information
> 2. Processes that data appropriately
> 3. Presents the information in a clear, user-friendly interface
> 4. Allows users to interact with the dashboard to view different weather metrics
>
> The key components you'll need to develop are:
> - Functions to retrieve and process data from the provided module
> - A display system (likely console-based) to show weather information
> - User interaction components to allow navigation and selection
> - Visualisation elements for presenting weather data graphically

Human follow-up prompt (clarification):

That’s helpful. Could you help me understand what types of weather
data are typically available through weather APIs, and what visualisations
might be most useful for users? This will help me plan my dashboard
layout.

Step 2: Identify Input and Output Requirements

Human prompt:

Based on our discussion, let me identify the specific inputs and outputs for
my weather dashboard:

233

14. Case Studies

Inputs: - Location information (city name or coordinates) - Type of weather
data requested (current, forecast) - Time period for forecast data

Outputs: - Current weather conditions display - Visual representations of
temperature, humidity, etc. - Forecast for upcoming days - User navigation
menu

Does this cover the essential inputs and outputs? Is there anything impor-
tant I’m missing?

AI response:
> Your input/output identification is strong! A few additional considerations:
>
> Additional inputs to consider:
> - User preferences for temperature units (Celsius/Fahrenheit)
> - Display preferences (text-only vs. graphical visualisation)
> - Refresh rate for data updates
>
> Additional outputs to consider:
> - Error messages for handling unavailable data or connection issues
> - Status indicators for data freshness
> - Historical data comparisons (if available)
> - Weather alerts or warnings

Step 3: Work Problem by Hand

Human prompt:

Before we start coding, I want to sketch out the user interaction flow for
the dashboard:

1. User starts program
2. Program displays welcome and prompts for location

234

14.1. Case Study 1: Building a Data Analysis Pipeline

3. User enters location
4. Program fetches current weather data
5. Program displays main dashboard with:

• Current temperature and conditions
• Today’s high/low
• Humidity and wind
• Simple 3-day forecast

6. Program shows menu options:

• View detailed forecast
• View temperature graph
• Change location
• Exit

7. User selects option
8. Program displays selected information
9. Return to menu (step 6)

Does this flow make sense? Would you structure the user experience
differently?

Step 4: Write Pseudocode

Human prompt:

Now that we have a clear understanding of the problem and user flow,
could you help me write pseudocode for this weather dashboard? I want
to focus on creating a modular design with separate functions for data
retrieval, display, and user interaction.

AI response:

235

14. Case Studies

```python
# Main program structure
function main():

display_welcome()
location = get_location_from_user()
units = get_preferred_units()

while True:
weather_data = fetch_weather_data(location, units)
display_dashboard(weather_data)
choice = display_menu()

if choice == "forecast":
display_detailed_forecast(weather_data)

else if choice == "graph":
display_temperature_graph(weather_data)

else if choice == "location":
location = get_location_from_user()

else if choice == "refresh":
continue # Will loop back and refresh data

else if choice == "exit":
break

# Data functions
function fetch_weather_data(location, units):

# Use provided weather module to get data
current_weather = weather_module.get_current(location, units)
forecast = weather_module.get_forecast(location, units)
return {current: current_weather, forecast: forecast}

# Display functions
function display_dashboard(weather_data):

clear_screen()
display_current_conditions(weather_data["current"])

236



14.1. Case Study 1: Building a Data Analysis Pipeline

display_simple_forecast(weather_data["forecast"])

function display_detailed_forecast(weather_data):
clear_screen()
for day in weather_data["forecast"]:

display_day_forecast(day)
wait_for_user()

function display_temperature_graph(weather_data):
clear_screen()
temperatures = extract_temperatures(weather_data["forecast"])
dates = extract_dates(weather_data["forecast"])
create_line_graph(dates, temperatures)
wait_for_user()

# User interaction functions
function display_menu():

print menu options
return get_valid_choice()

function get_location_from_user():
prompt for location
validate location
return location

Follow-up prompt (challenge):

The pseudocode looks good overall. I noticed that error handling isn't explicitly included. Could you expand the pseudocode to include error handling for:

1. Invalid location input
2. Weather service connection failures
3. Handling missing data in the weather response

237



14. Case Studies

14.1.2.6. Step 5: Convert to Python Code

The developer starts implementing the solution based on the pseudocode,
focusing on modularity, error handling, and user experience.

14.1.2.7. Step 6: Test with Data

Human prompt:

Now I want to test this code with some sample data. Can you provide a sample data structure that would be returned by:

1. weather_api.get_current()
2. weather_api.get_forecast()

Also, what test cases should I consider to ensure my dashboard handles all possible scenarios correctly?

AI response: > Here are sample data structures that might be returned
by the weather API: > > python > # Sample current weather
data > sample_current = { > 'location': 'New York',
> 'timestamp': '2023-09-15 14:30', > 'temperature':
22, > 'feels_like': 24, > 'condition': 'Partly
Cloudy', > 'humidity': 65, > 'wind_speed': 8, >
'wind_direction': 'NE', > 'pressure': 1012, > 'visibility':
10, > 'uv_index': 5, > 'units': 'metric' > } > > #
Sample forecast data (list of days) > sample_forecast = [ >
{ > 'date': '2023-09-15', > 'day_of_week':
'Friday', > 'high': 24, > 'low': 18, >
'condition': 'Partly Cloudy', > 'precipitation_chance':
20, > 'humidity': 65, > 'wind_speed': 8, >
'wind_direction': 'NE', > 'units': 'metric' > },
> # Additional days would follow... > ] > > > Test cases to
consider: > > 1. Happy path: > - Valid location with complete weather

238



14.1. Case Study 1: Building a Data Analysis Pipeline

data > - Multiple days of forecast > > 2. Data issues: > - Missing fields
in current weather > - Partial forecast data available > - Empty forecast
list > > 3. Connection issues: > - API timeout > - Service unavailable
> > 4. User input scenarios: > - Invalid location name > - Empty
input > - Special characters in location name

14.1.3. Before and After Example: Improving a Key Function

One of the critical functions in the application is the data retrieval function.
Let’s examine how intentional prompting improved this function:

14.1.3.1. Before: Initial Data Retrieval Function

def fetch_weather_data(location, units):
"""Fetch weather data from API."""
current_weather = weather_api.get_current(location, units)
forecast = weather_api.get_forecast(location, units, days=5)
return {"current": current_weather, "forecast": forecast}

14.1.3.2. Refinement Process Prompt

The fetch_weather_data() function needs improvement. It doesn't handle errors or validate the data. How can I make it more robust to:

1. Handle connection errors
2. Validate returned data structure
3. Handle missing or incomplete data
4. Provide meaningful error messages to the user

239



14. Case Studies

14.1.3.3. After: Improved Data Retrieval Function

def fetch_weather_data(location, units):
"""
Fetch weather data from API with comprehensive error handling.

Args:
location: City name or location
units: 'metric' or 'imperial'

Returns:
Dictionary containing current weather and forecast

Raises:
ConnectionError: If unable to connect to weather service
ValueError: If location is invalid or data is incomplete

"""
try:

# Attempt to get current weather
current_weather = weather_api.get_current(location, units)

# Validate current weather data
required_current_fields = ['temperature', 'condition', 'humidity', 'wind_speed']
missing_fields = [field for field in required_current_fields if field not in current_weather]

if missing_fields:
# Handle missing fields by providing defaults
for field in missing_fields:

current_weather[field] = "N/A"

# Log the issue but don't fail completely
print(f"Warning: Some current weather data is unavailable: {', '.join(missing_fields)}")

240



14.1. Case Study 1: Building a Data Analysis Pipeline

# Attempt to get forecast with retry mechanism
max_retries = 3
retry_count = 0
forecast = None

while retry_count < max_retries and forecast is None:
try:

forecast = weather_api.get_forecast(location, units, days=5)
break

except Exception as e:
retry_count += 1
if retry_count >= max_retries:

print(f"Warning: Could not retrieve forecast data. Using current conditions only.")
forecast = [] # Empty forecast as fallback

else:
time.sleep(1) # Wait before retrying

# Ensure forecast is a list (even if empty)
if not isinstance(forecast, list):

forecast = []

return {
"current": current_weather,
"forecast": forecast,
"location": location,
"units": units,
"timestamp": time.strftime("%Y-%m-%d %H:%M")

}

except ConnectionError:
raise ConnectionError("Failed to connect to weather service. Please check your internet connection.")

except ValueError as e:
raise ValueError(f"Invalid location: {location}. Please check spelling and try again.")

241



14. Case Studies

except Exception as e:
# Convert any other exceptions from the API to something we can handle
raise Exception(f"Error fetching weather data: {str(e)}")

14.1.4. Lessons Learned

This case study demonstrates several key aspects of intentional prompt-
ing:

1. Thorough problem exploration - The developer took time to
understand requirements and data structures before coding

2. Modular design - The solution was broken down into focused
functions with clear responsibilities

3. Proactive error handling - Multiple failure scenarios were identi-
fied and handled gracefully

4. Iterative refinement - The initial simple implementation was sys-
tematically improved based on specific requirements

5. Test scenario preparation - Sample data and test cases were
identified before testing began

The intentional approach resulted in a robust, maintainable application
that properly handles edge cases and provides a good user experience, even
when dealing with external data sources that may be unreliable.

14.2. Case Study 3: Debugging a Complex Bug

For our final case study, we’ll look at a debugging scenario where intentional
prompting techniques help solve a challenging issue.

242



14.2. Case Study 3: Debugging a Complex Bug

14.2.1. The Problem

A team is experiencing intermittent failures in their e-commerce checkout
system. The checkout process occasionally fails with a generic error message,
but only for certain users and at seemingly random times.

14.2.2. The Intentional Prompting Approach

14.2.2.1. Step 1: Restate the Problem

Human prompt:

We're experiencing intermittent failures in our checkout system. Let me restate the problem:

Users occasionally receive a generic "Unable to complete checkout" error when attempting to purchase items. The issue:
- Only affects approximately 5% of checkout attempts
- Seems more common during peak traffic hours
- Doesn't consistently affect the same users
- Doesn't correlate with specific products or payment methods
- Leaves limited information in our standard logs

Our goal is to identify the root cause and implement a fix to eliminate these checkout failures.

Is this an appropriate restatement of the debugging challenge?

14.2.2.2. Step 2: Identify Information Needed

Human prompt:

To debug this issue effectively, we need to gather specific information:

INPUTS (Information sources):

243



14. Case Studies

- Application logs with enhanced logging enabled
- Database transaction logs
- Server performance metrics during failures
- Network traffic patterns
- User session data for failed checkouts
- Payment processor API logs

OUTPUTS (What we need to determine):
- Exact point of failure in the checkout process
- Conditions that trigger the failure
- Root cause of the issue
- Potential fix or mitigation strategy

Are there other information sources or outputs we should consider to effectively debug this intermittent issue?

The debugging case study would continue through a systematic investigation
process, demonstrating how intentional prompting techniques help narrow
down the cause of complex bugs.

14.3. Key Takeaways

From these case studies, we can extract several important lessons about
intentional prompting:

1. Structured methodology yields better results

• Following all six steps produces more robust solutions than
jumping straight to implementation

• Each step builds on the previous one, creating a solid foundation

2. Problem exploration is time well spent

• Restating the problem and identifying inputs/outputs reveals
critical requirements

244



14.4. Moving Forward

• Manual exploration uncovers edge cases that might otherwise
be missed

3. AI assistance enhances human capability

• AI helps identify potential issues and optimizations
• The human developer maintains control over the approach and

design decisions

4. Testing is essential

• Starting with small, synthetic datasets verifies the approach
before scaling

• Comprehensive testing reveals potential issues early

5. Real-world complexity requires adaptability

• Initial solutions often need refinement as scale and complexity
increase

• The methodology provides a framework for iterative improve-
ment

14.4. Moving Forward

In the next chapter, we’ll explore how to scale intentional prompting to
complex projects, moving beyond individual functions or modules to entire
systems and codebases.

245





Part V.

Advanced Topics

247





15. Scaling to Complex Projects

So far, we’ve primarily focused on applying intentional prompting tech-
niques to isolated functions and small-scale problems. In real-world de-
velopment, however, you’ll often work on complex projects with multiple
components, larger codebases, and teams of developers. This chapter
explores strategies for scaling intentional prompting practices to handle
this increased complexity.

15.1. Beyond Single-File Programs

15.1.1. The Challenges of Scale

As projects grow in size and complexity, several challenges emerge:

1. Architecture becomes more important - The high-level organi-
zation of code has a greater impact on maintainability

2. Component interactions introduce new failure modes and depen-
dencies

3. Consistency across the codebase becomes harder to maintain
4. Knowledge distribution among team members becomes uneven
5. Contextual understanding becomes more difficult as no single

person knows every detail

These challenges require adaptations to our intentional prompting ap-
proach.

249



15. Scaling to Complex Projects

15.1.2. Intentional Architecture Design

For larger projects, architectural planning becomes an essential first step.
AI can be a valuable partner in this process:

Human prompt:

I'm designing a microservices architecture for an e-commerce platform. The main functions include:
- Product catalog
- User accounts
- Cart management
- Order processing
- Payment handling
- Shipping and fulfillment
- Analytics

What would be a sensible way to divide these into microservices? What are the key considerations for service boundaries, data ownership, and interaction patterns?

AI response: > Here’s a sensible approach to dividing your e-commerce
platform into microservices, along with key considerations: > > ###
Proposed Microservice Architecture > > 1. Product Service > - Product
catalog and management > - Categories and taxonomies > - Product
search and filtering capabilities > - Inventory and stock information >
> 2. User Service > - User accounts and profiles > - Authentication
and authorization > - User preferences and settings > - Address book
management > > 3. Cart Service > - Shopping cart management > -
Cart item operations (add, remove, update) > - Cart pricing calculations
> - Saved/wishlist items > > 4. Order Service > - Order creation and
management > - Order status tracking > - Order history > - Returns
and cancellations > > 5. Payment Service > - Payment processing > -
Payment method management > - Refund handling > - Fraud detection (or
integration with fraud services) > > 6. Fulfillment Service > - Shipping
and delivery management > - Carrier integrations > - Tracking information

250



15.1. Beyond Single-File Programs

> - Warehouse/inventory coordination > > 7. Analytics Service > -
Data collection and processing > - Reporting and dashboards > - Business
intelligence > - Customer behavior analysis > > ### Key Considerations
> > Service Boundaries: > > 1. Business Capability Alignment:
Each service should align with a specific business capability and have a
clearly defined responsibility. > > 2. Domain-Driven Design (DDD):
Consider using DDD principles to identify bounded contexts that form
natural service boundaries. > > 3. Autonomy: Services should be able to
function independently as much as possible, with their own databases and
minimal dependencies. > > 4. Size Balance: Neither too large (becoming
a monolith) nor too small (creating excessive inter-service communication).
> > Data Ownership: > > 1. Single Source of Truth: Each type of
data should be owned by exactly one service that serves as the authority
for that data. > > 2. Data Duplication vs. Service Calls: Decide
when to duplicate data across services (for performance/autonomy) versus
making service-to-service calls. > > 3. Consistency Models: Determine
where strong consistency is needed (typically within a service) and where
eventual consistency is acceptable (typically across services). > > 4. Data
Evolution: Plan for how data schemas can evolve while maintaining
compatibility. > > Interaction Patterns: > > 1. Synchronous
vs. Asynchronous: Choose between direct API calls (synchronous) and
message/event-based communication (asynchronous) based on the needs of
each interaction. > > 2. Event-Driven Architecture: Consider an event
bus for broadcasting state changes, which can help decouple services. > >
3. API Gateway: Implement an API gateway for client applications to
simplify their interaction with multiple backend services. > > 4. Service
Discovery: Implement a service registry so services can find each other
dynamically. > > 5. Circuit Breakers: Implement circuit breakers to
prevent cascading failures when dependent services are unavailable. > >
### Additional Considerations > > - Authentication/Authorization:
This could be handled by the User Service or a dedicated Auth Service,
potentially using an identity provider. > > - Notification Service:
Consider adding a dedicated service for handling all communications (email,
SMS, push notifications). > > - Review/Rating Service: For product

251



15. Scaling to Complex Projects

reviews and ratings, which crosses concerns between products and users.
> > - Search Service: For complex search functionality across multiple
domains, consider a dedicated service using specialized search technology. >
> This architecture provides a balanced approach that separates concerns
while maintaining logical cohesion within each service.

15.1.3. Component-Level Intentional Prompting

For complex projects, apply the six-step methodology at the component
level:

1. Restate the component’s purpose and responsibilities
2. Identify component interfaces (inputs and outputs)
3. Work through component interactions with sequence diagrams

or similar tools
4. Write pseudocode for key interfaces and interactions
5. Implement the component while maintaining clear boundaries
6. Test the component both in isolation and integrated with others

This approach ensures that each component is well-defined and properly
integrated into the larger system.

15.2. Managing AI in Larger Codebases

15.2.1. Context Limitations

A key challenge when using AI with large codebases is providing sufficient
context. Most AI assistants have limitations on how much code they can
analyze at once.

Strategies for managing context limitations:

252



15.2. Managing AI in Larger Codebases

1. Hierarchical exploration - Start with high-level architecture and
progressively drill down

2. Component-focused prompting - Focus inquiries on specific com-
ponents rather than the entire system

3. Interface-first approach - Prioritize understanding component
interfaces over implementation details

4. Strategic code sampling - Select representative portions of the
codebase for AI analysis

Example prompt for hierarchical exploration:

I'm working on a large e-commerce platform. Let me first describe the high-
level architecture:

[High-level description of system components and their interactions]

I'd like to focus on improving the cart service. Here's the interface for this component:

[Cart service interface definition]

Based on this architectural context, what are the key considerations I should keep in mind when implementing a new feature for bundle discounts in the cart service?

15.2.2. Maintaining Consistency

In larger projects, maintaining consistent patterns and approaches becomes
critical. AI can help enforce these standards:

Human prompt:

Our team has established these coding standards for our Java backend services:

1. Controller-Service-Repository pattern for all API endpoints
2. Immutable data objects using Lombok

253



15. Scaling to Complex Projects

3. Detailed error handling with custom exception classes
4. Comprehensive logging with structured log format
5. Unit tests for all business logic

Here's an example of a controller that follows our standards:

[Example controller code]

I need to create a new endpoint for managing product bundles. Can you help me implement this following our established patterns?

15.2.3. Modular Prompting Strategies

For complex tasks, break down your prompts into modular components:

1. Context establishment - Provide the necessary background infor-
mation

2. Specific task definition - Clearly state what you’re trying to
accomplish

3. Constraints and requirements - Outline any limitations or must-
have features

4. Expected output format - Specify how you want the response
structured

Example of modular prompting:

CONTEXT:
I'm working on an analytics dashboard for our e-commerce platform. The dashboard uses React on the frontend with a Node.js/Express backend. We fetch data from multiple microservices and aggregate it for display.

TASK:
I need to implement a caching layer for API responses to improve dashboard loading time.

CONSTRAINTS:
- Cache must invalidate after 5 minutes

254



15.3. Intentional System Design with Prompting

- Cache should be per-user (different users see different data)
- Solution must work with our existing authentication system (JWT-
based)
- Must handle error cases gracefully

REQUESTED OUTPUT:
Please provide:
1. A recommended caching approach
2. Pseudocode for the implementation
3. Any considerations for scaling this solution

15.3. Intentional System Design with Prompting

15.3.1. Designing for Evolution

Complex systems evolve over time. Intentional prompting at scale means
designing with this evolution in mind:

Human prompt:

I'm designing a payment processing system that currently needs to support credit cards and PayPal. In the future, we anticipate adding:
- Additional payment providers
- Cryptocurrency payments
- Subscription billing
- Regional payment methods

How should I design the system to make these future additions as straightforward as possible? What patterns would help maintain a clean architecture as the system grows?

AI response: > Designing a payment processing system with future
extensibility in mind requires careful architectural planning. Here’s a
comprehensive approach: > > ### Core Architectural Patterns > >
1. Strategy Pattern for Payment Methods > - Create a common

255



15. Scaling to Complex Projects

PaymentProcessor interface > - Implement concrete strategies for each
payment method (CreditCardProcessor, PayPalProcessor) > - Use
a factory to instantiate the appropriate processor based on payment
type > > 2. Adapter Pattern for External Services > - Create a
consistent internal API for payment operations > - Implement adapters
for each external service (Stripe, PayPal, etc.) > - This isolates external
API changes from your core system > > 3. Provider Model for
New Payment Types > - Implement a plugin/provider registration
system > - New payment methods can be added as modules without
modifying core code > - Use dependency injection to load payment
providers > > ### System Architecture Components > > 1. Payment
Gateway Interface > java > public interface PaymentGateway
{ > PaymentResult process(PaymentRequest request);
> RefundResult refund(RefundRequest request); >
PaymentStatus checkStatus(String paymentId); > //
Future methods can be added as needed > } > > > 2. Ab-
stract Payment Method > java > public abstract class
PaymentMethod { > protected PaymentGateway gateway; >
> public abstract PaymentResponse authorize(Money
amount, Customer customer); > public abstract PaymentResponse
capture(String authorizationId); > public abstract
PaymentResponse refund(String paymentId, Money amount);
> > // Methods for subscription handling
(future extension) > public boolean supportsSubscriptions()
{ return false; } > public PaymentResponse createSubscription(SubscriptionRequest
request) { > throw new UnsupportedOperationException();
> } > } > > > 3. Payment Provider Registry > java
> public class PaymentProviderRegistry { > private
Map<String, PaymentMethod> providers = new HashMap<>();
> > public void registerProvider(String type,
PaymentMethod provider) { > providers.put(type,
provider); > } > > public PaymentMethod
getProvider(String type) { > if (!providers.containsKey(type))
{ > throw new UnsupportedPaymentTypeException(type);

256



15.3. Intentional System Design with Prompting

> } > return providers.get(type); >
} > > public List<String> getSupportedPaymentTypes()
{ > return new ArrayList<>(providers.keySet()); >
} > } > > > ### Design Principles to Follow > > 1. Abstraction
Layers > - Separate business logic from payment provider integration > -
Create clear boundaries between components >
> 2. Configuration Over Code > - Use configuration files for
provider settings > - Enable/disable payment methods without code
changes > > 3. Event-Driven Approach > - Implement payment
events (initiated, authorized, captured, failed, refunded) > - Allow
other systems to react to payment events without tight coupling > >
4. Idempotency > - Design all operations to be idempotent (can
be safely retried) > - Use idempotency keys for external API calls
> > 5. Generic Data Models > - Design data models that can
accommodate various payment methods > - Use extensible property bags
for method-specific data > > ### Specific Extension Points > > 1. For
Cryptocurrency Support: > - Add a CryptocurrencyPaymentMethod
class > - Implement blockchain transaction monitoring > - Consider
address generation and validation > > 2. For Subscription Billing:
> - Extend the payment interface with subscription-specific methods >
- Add models for subscription plans, billing cycles, etc. > - Implement
subscription state management > > 3. For Regional Payment
Methods: > - Add metadata for region availability to payment
methods > - Implement region-specific validation and processing rules > -
Consider internationalization requirements > > ### Implementation
Example > > Here’s a skeleton implementation of the core components:
> > java > // The request/response models > public class
PaymentRequest { > private String paymentMethodType;
> private Money amount; > private Customer customer;
> private Map<String, Object> methodSpecificData = new
HashMap<>(); > // getters and setters > } > > public
class PaymentResponse { > private boolean success; >
private String transactionId; > private PaymentStatus
status; > private String errorCode; > private String

257



15. Scaling to Complex Projects

errorMessage; > // getters and setters > } > > // The
payment service > public class PaymentService { > private
PaymentProviderRegistry providerRegistry; > > public
PaymentResponse processPayment(PaymentRequest request) { >
PaymentMethod method = providerRegistry.getProvider(request.getPaymentMethodType());
> return method.authorize(request.getAmount(),
request.getCustomer()); > } > > // Additional
methods for different payment operations > } > > > ### Test-
ing Considerations > > 1. Create mock implementations of payment
gateways for testing > 2. Implement comprehensive integration tests
for each payment provider > 3. Design a test framework that can
validate new payment methods > > By following these patterns and
principles, your payment system will be well-positioned to accommodate
new payment methods and functionality with minimal changes to the core
architecture.

15.3.2. Cross-Cutting Concerns

In complex systems, certain concerns cut across multiple components.
Intentional design addresses these systematically:

Human prompt:

In our microservices architecture, we're seeing the same patterns implemented inconsistently across services for:
- Authentication and authorization
- Logging and monitoring
- Error handling and reporting
- API request validation
- Rate limiting

How can we standardize these cross-cutting concerns across our services while maintaining each team's autonomy over their service's core functionality?

258



15.4. Documentation and Knowledge Transfer

15.4. Documentation and Knowledge Transfer

15.4.1. Intentional System Documentation

Documentation is particularly crucial for complex systems. AI can help
create and maintain effective documentation:

Human prompt:

I've implemented a new authentication service with the following components:
- OAuth2 provider integration
- JWT token issuance and validation
- Role-based access control
- Multi-factor authentication support

I need to create comprehensive documentation for other developers who will integrate with this service. What should my documentation cover, and how should I structure it for maximum clarity?

AI response: > # Authentication Service Documentation Structure > >
Here’s a comprehensive documentation structure for your authentication
service that balances thoroughness with usability: > > ## 1. Overview >
> ### 1.1 Purpose and Scope > - Brief description of the authentication
service > - Core features (OAuth2, JWT, RBAC, MFA) > - Where it fits in
the overall system architecture > > ### 1.2 High-Level Architecture > -
Component diagram showing major parts of the auth service > - Integration
points with other systems > - Data flow diagrams for key authentication
paths > > ### 1.3. Terminology > - Clear definitions of domain-specific
terms > - Explanation of OAuth2 concepts for those unfamiliar > > ## 2.
Getting Started > > ### 2.1 Prerequisites > - Required credentials and
access > - Development environment setup > - Dependencies > > ### 2.2
Quick Start Guide > - Basic implementation examples for common scenarios
> - Sample code for authentication flows > - Minimal configuration example
> > ### 2.3 Integration Checklist > - Step-by-step guide for service
integration > - Security best practices checklist > > ## 3. Core Features >

259



15. Scaling to Complex Projects

> ### 3.1 OAuth2 Provider Integration > - Supported OAuth providers
> - Configuration parameters > - Authorization code flow implementation
> - Refresh token handling > - Error scenarios and troubleshooting > >
### 3.2 JWT Token Management > - Token structure and payload >
- Issuance process and endpoints > - Validation procedures > - Token
lifecycle (expiration, refresh) > - Signature verification > > ### 3.3 Role-
Based Access Control > - Role hierarchy and definitions > - Permission
assignments > - Role checking API > - Integration with resource servers
> - Custom permission logic > > ### 3.4 Multi-Factor Authentication
> - Supported MFA methods > - Enrollment process > - Verification
flow > - Fallback mechanisms > - End-user experience considerations >
> ## 4. API Reference > > ### 4.1 Authentication Endpoints > -
Complete API specification (OpenAPI/Swagger) > - Request/response
formats > - Error codes and handling > - Rate limits > > ### 4.2
Client Libraries > - Available client libraries for different languages > -
Installation instructions > - Basic usage patterns > > ### 4.3 Middleware
Components > - Authentication middleware for different frameworks >
- Configuration options > - Error handling > > ## 5. Implementation
Guides > > ### 5.1 Backend Service Integration > - Step-by-step guide
with code examples > - Validation middleware setup > - Error handling
best practices > > ### 5.2 Frontend Application Integration > - Login
implementation > - Token storage strategies > - Handling token expiration
> - Logout procedures > > ### 5.3 Mobile Application Integration >
- Native app authentication flows > - Biometric integration > - Token
storage on mobile devices > > ## 6. Security Considerations > > ###
6.1 Security Best Practices > - HTTPS requirements > - Token storage
recommendations > - CSRF protection > - XSS prevention > > ### 6.2
Common Vulnerabilities > - Known attack vectors > - Prevention strategies
> - Security testing checklist > > ### 6.3 Compliance Information > -
Relevant standards compliance (GDPR, SOC2, etc.) > - Audit logging
capabilities > > ## 7. Operations > > ### 7.1 Monitoring and Alerting
> - Available metrics > - Recommended alerts > - Performance benchmarks
> > ### 7.2 Troubleshooting > - Common issues and resolutions > -
Logging details > - Debugging tools > > ### 7.3 Disaster Recovery

260



15.4. Documentation and Knowledge Transfer

> - Failure scenarios > - Recovery procedures > > ## 8. Reference
Implementations > > ### 8.1 Sample Applications > - Links to reference
implementations > - Example projects demonstrating best practices > >
### 8.2 Common Patterns > - Authentication patterns for microservices
> - Single sign-on implementation > - API gateway integration > > ## 9.
FAQ and Support > > ### 9.1 Frequently Asked Questions > - Answers
to common questions > - Clarification of complex concepts > > ### 9.2
Getting Help > - Support channels > - Issue reporting procedure > - SLAs
and response times > > ## Documentation Tips > > 1. Use consistent
terminology throughout all documentation > > 2. Include working
code examples that developers can copy and adapt > > 3. Create
diagrams for complex flows, especially the OAuth2 and MFA processes
> > 4. Add sequence diagrams showing the authentication process
across systems > > 5. Document error scenarios just as thoroughly
as success paths > > 6. Version your documentation to align with
service versions > > 7. Provide a searchable format (ideally with
a good search function) > > 8. Include a changelog tracking major
documentation updates > > This structure provides a comprehensive yet
navigable documentation set that addresses the needs of different audiences
- from developers getting started to those troubleshooting specific issues.

15.4.2. AI-Enhanced Code Documentation

AI can also help create and maintain code-level documentation:

Human prompt:

Here's a complex piece of code from our order processing system:

```java
public class OrderProcessor {

private final InventoryService inventoryService;
private final PaymentService paymentService;

261

15. Scaling to Complex Projects

private final ShippingService shippingService;
private final NotificationService notificationService;
private final OrderRepository orderRepository;

// Constructor and other methods...

\\@Transactional
public OrderResult processOrder(Order order) {

// Validate order
if (order == null || order.getItems().isEmpty()) {

return OrderResult.failure("Order must contain at least one item");
}

// Check inventory
List<String> unavailableItems = new ArrayList<>();
for (OrderItem item : order.getItems()) {

InventoryStatus status = inventoryService.checkAvailability(item.getProductId(), item.getQuantity());
if (status != InventoryStatus.AVAILABLE) {

unavailableItems.add(item.getProductId());
}

}

if (!unavailableItems.isEmpty()) {
return OrderResult.failure("Items not available: " + String.join(", ", unavailableItems));

}

// Reserve inventory
try {

for (OrderItem item : order.getItems()) {
inventoryService.reserveInventory(item.getProductId(), item.getQuantity(), order.getId());

}
} catch (InventoryException e) {

return OrderResult.failure("Failed to reserve inventory: " + e.getMessage());
}

262

15.4. Documentation and Knowledge Transfer

// Process payment
PaymentResult paymentResult;
try {

paymentResult = paymentService.processPayment(order.getPaymentDetails(), order.getTotalAmount());
if (!paymentResult.isSuccessful()) {

// Release inventory if payment fails
for (OrderItem item : order.getItems()) {

inventoryService.releaseInventory(item.getProductId(), item.getQuantity(), order.getId());
}
return OrderResult.failure("Payment failed: " + paymentResult.getErrorMessage());

}
} catch (PaymentException e) {

// Release inventory if payment throws exception
for (OrderItem item : order.getItems()) {

inventoryService.releaseInventory(item.getProductId(), item.getQuantity(), order.getId());
}
return OrderResult.failure("Payment error: " + e.getMessage());

}

// Update order status
order.setStatus(OrderStatus.PAID);
order.setPaymentId(paymentResult.getTransactionId());
orderRepository.save(order);

// Create shipment
try {

ShipmentResult shipmentResult = shippingService.createShipment(order);
if (shipmentResult.isSuccessful()) {

order.setStatus(OrderStatus.SHIPPED);
order.setTrackingNumber(shipmentResult.getTrackingNumber());
orderRepository.save(order);

} else {
// Shipment creation failed but payment succeeded

263

15. Scaling to Complex Projects

// Requires manual intervention
order.setStatus(OrderStatus.PAYMENT_RECEIVED);
order.setNotes("Shipment creation failed: " + shipmentResult.getErrorMessage());
orderRepository.save(order);
notificationService.notifyAdminOfShippingIssue(order);

}
} catch (ShippingException e) {

// Shipment creation threw exception
order.setStatus(OrderStatus.PAYMENT_RECEIVED);
order.setNotes("Shipping error: " + e.getMessage());
orderRepository.save(order);
notificationService.notifyAdminOfShippingIssue(order);

}

// Send confirmation
notificationService.sendOrderConfirmation(order);

return OrderResult.success(order);
}

// Other methods...
}

Can you provide comprehensive JavaDoc documentation for this class and
the processOrder method, explaining its purpose, the process flow, error
handling, and any considerations for extending or modifying it?

Knowledge Distribution in Teams

Collaborative Learning Patterns

Intentional prompting in team settings requires effective knowledge sharing patterns:

264

15.4. Documentation and Knowledge Transfer

Human prompt:

Our development team of 12 engineers is working on a complex system with
multiple components. We’re finding that knowledge is becoming siloed,
with each developer understanding only their area deeply.

What collaboration patterns or team practices would help us maintain a
shared understanding of the system while allowing for individual special-
ization?

AI response:
> # Team Knowledge Sharing Patterns for Complex Systems
>
> To balance specialized expertise with shared understanding in your team of 12 engineers, consider implementing these complementary practices:
>
> ## Regular Knowledge Exchange Practices
>
> ### 1. Rotation-Based Code Reviews
> - **Approach**: Assign code reviews outside of a developer's primary area
> - **Frequency**: Every developer reviews code outside their specialty at least once per sprint
> - **Implementation**: Create a rotation schedule ensuring exposure to different components
> - **Benefits**: Cross-pollination of ideas and gradual knowledge distribution
>
> ### 2. Architecture Decision Records (ADRs)
> - **Approach**: Document significant architectural decisions with context and rationale
> - **Content**: Problem statement, constraints, considered options, chosen solution, consequences
> - **Storage**: Keep in version control alongside the code
> - **Review**: Team-wide review of new ADRs in dedicated meetings
>
> ### 3. Component Demo Sessions
> - **Approach**: Regular deep-dives into specific components
> - **Format**: 30-45 minute sessions with code walkthroughs, followed by Q&A

265

15. Scaling to Complex Projects

> - **Frequency**: Weekly or bi-weekly, rotating through components
> - **Documentation**: Record sessions and summarize key points in a knowledge base
>
> ### 4. Pair Programming Rotations
> - **Approach**: Scheduled pair programming sessions across component boundaries
> - **Duration**: Half-day sessions
> - **Frequency**: Bi-weekly for each developer
> - **Pairing**: Deliberate pairings of specialists with non-
specialists
>
> ## Documentation Practices
>
> ### 5. Living Architecture Diagram
> - **Approach**: Maintain an always-current system architecture visualization
> - **Ownership**: Rotating responsibility for updates
> - **Reviews**: Monthly team reviews to ensure accuracy
> - **Accessibility**: Prominently displayed in team spaces (physical and virtual)
>
> ### 6. Component Fact Sheets
> - **Approach**: One-page summaries of each component's purpose, interfaces, and quirks
> - **Content**: Core responsibilities, key interfaces, common issues, future plans
> - **Updates**: Refresh quarterly or after major changes
> - **Usage**: Required reading for onboarding to a new component
>
> ## Team Structure Adaptations
>
> ### 7. Bounded Rotation Program
> - **Approach**: Planned rotations of developers between components
> - **Duration**: 4-8 weeks per rotation
> - **Scope**: Limited to 1-2 developers rotating at once to maintain continuity
> - **Knowledge Transfer**: Dedicated handoff sessions when starting/ending rotations
>
> ### 8. Component Ambassadors
> - **Approach**: Each component has a primary owner and a secondary "ambassador"

266

15.4. Documentation and Knowledge Transfer

> - **Ambassador Role**: Learn enough to answer questions and represent the component
> - **Rotation**: Ambassadors rotate every 3-6 months
> - **Responsibilities**: Attend cross-component design meetings, review integration points
>
> ## Meeting Structures
>
> ### 9. System-Wide Design Reviews
> - **Approach**: Regular reviews of how components interact
> - **Frequency**: Monthly
> - **Format**: Each team presents recent changes and upcoming work
> - **Focus**: Integration points and cross-cutting concerns
>
> ### 10. Technical Brown Bags
> - **Approach**: Lunch-and-learn sessions on specific technical topics
> - **Presenters**: Rotating responsibility among team members
> - **Topics**: Both component-specific and general engineering practices
> - **Schedule**: Weekly or bi-weekly
>
> ## Tooling and Infrastructure
>
> ### 11. Centralized Documentation Portal
> - **Approach**: Single entry point for all system documentation
> - **Content**: Component guides, architecture diagrams, ADRs, API docs
> - **Maintenance**: Part of definition of done for features
> - **Search**: Robust search functionality across all documentation
>
> ### 12. Cross-Component Integration Tests
> - **Approach**: Shared ownership of integration test suite
> - **Responsibility**: All developers contribute to integration tests
> - **Reviews**: Cross-component review of test scenarios
> - **Visibility**: Integration test results prominently displayed
>
> ## Implementation Strategy
>

267

15. Scaling to Complex Projects

> Rather than implementing all these patterns at once:
>
> 1. **Start with 3-4 high-impact practices** based on your team's specific needs
> 2. **Evaluate after 2-3 months** to assess effectiveness
> 3. **Add or adjust practices** based on team feedback
> 4. **Create explicit time allocations** for knowledge sharing activities
>
> These practices will help create multiple knowledge bridges across component boundaries while still allowing for deep specialization where needed.

Documentation as Code

Treat documentation as a first-class development artifact:

Human prompt:

We want to implement a “documentation as code” approach for our mi-
croservices architecture. This would mean: - Documentation lives alongside
code in the repository - Documentation is reviewed and updated with code
changes - Documentation is automatically generated and published

What tools, practices, and workflows would you recommend for implement-
ing this approach effectively?

Practical Exercise: Scaling an Application

Let's apply these principles to a practical exercise scaling a simple application to a more complex system.

Initial Simple Application

Human prompt:

I have a simple note-taking application with these components: - A React

268

15.4. Documentation and Knowledge Transfer

frontend for creating and viewing notes - A Node.js/Express backend with
RESTful APIs - MongoDB for data storage

Now I need to scale this to an enterprise collaboration platform with: -
Team workspaces - Document sharing and editing - User permissions and
roles - Activity tracking and notifications - Integration with other tools via
webhooks

How should I approach scaling this application architecture? What com-
ponents would I need to add or modify, and how can I ensure the system
remains maintainable as it grows?

Key Takeaways

- Scaling intentional prompting to complex projects requires architectural thinking
- Break down large systems into manageable components with clear boundaries
- Use modular prompting strategies to help AI understand complex contexts
- Address cross-cutting concerns systematically across the system
- Invest in comprehensive documentation and knowledge-
sharing practices
- Treat documentation as a first-class artifact that evolves with the code
- Use collaborative patterns to distribute knowledge across the team

Moving Forward

In the next chapter, we'll explore how intentional prompting principles can be applied in teaching and learning contexts, helping both educators and students navigate programming education in the AI era.

`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNoYXB0ZXJzIn0= -->`{=html}

```{=html}
<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNoYXB0ZXJzIiwiYm9va0l0ZW1UeXBlIjoiY2hhcHRlciIsImJvb2tJdGVtTnVtYmVyIjoxNiwiYm9va0l0ZW1GaWxlIjoiY2hhcHRlcnMvMTUtdGVhY2hpbmctbGVhcm5pbmcucW1kIiwiYm9va0l0ZW1EZXB0aCI6MX0= -->

269





16. Teaching and Learning

The advent of AI coding assistants has dramatically changed not just how
we program, but also how we teach and learn programming. This chapter
explores the application of intentional prompting principles in educational
settings, offering guidance for both educators and students.

16.1. Pedagogical Applications of Intentional
Prompting

16.1.1. Rethinking Programming Education

Traditional programming education has focused on teaching syntax, algo-
rithms, and problem-solving techniques directly. With AI assistants readily
available, the educational focus needs to shift:

Traditional Focus Intentional Prompting Focus

Syntax memorization Critical evaluation of AI-generated code
Writing code from scratch Guiding AI toward better solutions
Debugging syntax errors Understanding conceptual errors
Implementing standard
algorithms

Adapting algorithms to specific contexts

Following prescribed solutions Exploring multiple approaches

271



16. Teaching and Learning

This shift doesn’t mean abandoning the fundamentals—rather, it means
teaching them in a new context where AI collaboration is assumed.

16.1.2. The Educator’s Role in the AI Era

Educators now have additional responsibilities:

1. Teaching effective prompting alongside programming concepts
2. Modeling critical evaluation of AI-generated solutions
3. Emphasizing conceptual understanding over implementation

details
4. Preparing students for a future where AI collaboration is the norm
5. Creating assessment methods that work in an AI-assisted envi-

ronment

16.1.3. Integrating AI into Curriculum Design

AI assistants can be integrated at different levels of the curriculum:

Level 1: AI as a Learning Resource - Students use AI to explain
concepts they don’t understand - AI provides additional examples and
alternative explanations - Educators guide students on effective question-
asking

Level 2: AI as a Programming Partner - Students learn to prompt AI
for code suggestions - Assignments include evaluating and improving AI-
generated code - Focus on understanding the “why” behind AI suggestions

Level 3: AI as a Feedback Mechanism - Students request AI feedback
on their code - AI identifies potential improvements and best practices -
Students learn to critically evaluate AI feedback

Level 4: AI as a Challenge Mechanism - Students intentionally guide
AI toward errors, then identify them - Assignments include “debugging”
AI-generated code - Focus on developing critical thinking skills

272



16.2. Designing Assignments in the AI Era

16.2. Designing Assignments in the AI Era

16.2.1. Beyond “AI-Proof” Assignments

Many educators initially responded to AI coding assistants by trying to
create “AI-proof” assignments—ones that AI tools couldn’t easily solve.
This approach is ultimately unsustainable and misses the opportunity to
teach intentional prompting skills.

Instead, design assignments that incorporate AI collaboration explicitly:

16.2.2. Prompting-Focused Assignments

These assignments emphasize the skill of effective prompting:

Example assignment:

Topic: Sorting Algorithms

Your task is to implement a merge sort algorithm in Python. Instead of
coding it directly, you'll guide an AI assistant through the implementation
process.

Requirements:
1. Start with a broad prompt asking the AI to implement merge sort
2. Evaluate the initial implementation, identifying at least three aspects to improve
3. Use targeted prompts to refine the implementation
4. Document each prompt you used and the AI's response
5. Submit your final code along with your prompting journey and reflections

273



16. Teaching and Learning

16.2.3. Step-by-Step Guided Exercise

This example from an educational setting shows how to guide students
through intentional prompting:

Example: Building a Python Gradebook

Task: Create a gradebook program that: - Uses a dictionary
to store student names and their list of scores - Has a function
to calculate average score - Prints each student’s name and
average - Handles edge cases (e.g., empty lists, invalid inputs)

Step 1: Start Simple

"Can you help me write a Python program to store student names and their test scores, and print their average?"

The AI might provide a basic implementation:

students = {
"Alice": [85, 90, 78],
"Bob": [70, 88, 92],
"Charlie": [100, 100, 90]

}

for name, scores in students.items():
avg = sum(scores) / len(scores)
print(f"{name} has an average of {avg}")

Step 2: Add a Function

"Can you turn the average calculation into a function?"

274



16.2. Designing Assignments in the AI Era

The AI improves the implementation:

def average(scores):
return sum(scores) / len(scores)

for name, scores in students.items():
print(f"{name} has an average of {average(scores)}")

Step 3: Improve Robustness

"What happens if a student has no scores? Can you fix that?"

The AI addresses the edge case:

def average(scores):
if not scores:

return 0
return sum(scores) / len(scores)

This guided approach teaches students to: - Start with a simple prompt -
Identify limitations in the initial response - Use targeted follow-up prompts
to improve specific aspects - Think critically about edge cases - Guide the
AI through a step-by-step improvement process

16.2.4. Evaluation and Improvement Assignments

These assignments focus on critical evaluation of AI-generated code:

Example assignment:

275



16. Teaching and Learning

Topic: Error Handling

You are provided with an AI-generated function that processes user
input for a banking application. The code is functional but has
issues with error handling, security, and readability.

Requirements:
1. Evaluate the provided code, identifying all potential issues
2. Create a prioritized list of improvements needed
3. Implement the improvements
4. Document your reasoning for each change
5. Reflect on what the AI should have done differently

16.2.5. Comparative Analysis Assignments

These assignments emphasize exploring multiple approaches:

Example assignment:

Topic: Data Structures

Use an AI assistant to implement three different data structures for
storing and retrieving student records: a hash table, a binary search
tree, and a balanced tree.

Requirements:
1. Guide the AI to implement each data structure
2. Create a test suite to measure performance characteristics
3. Analyze the strengths and weaknesses of each approach
4. Select the most appropriate structure for the given requirements
5. Justify your selection with empirical evidence

276



16.3. Assessing Understanding vs. Output

16.2.6. Process Documentation Assignments

These assignments focus on the development process rather than just the
final code:

Example assignment:

Topic: API Development

Create a RESTful API for a library management system, documenting your
entire development process.

Requirements:
1. Document your initial planning (endpoints, data models)
2. Record all prompts used with AI assistants
3. Document key decisions and pivots during development
4. Include a reflective analysis of where AI was most/least helpful
5. Identify areas where your human expertise was essential

16.3. Assessing Understanding vs. Output

16.3.1. Moving Beyond Code Assessment

In the AI era, the code students produce is no longer a reliable indicator
of their understanding. Assessment strategies must evolve:

16.3.2. Process-Based Assessment

Evaluate the student’s development process rather than just the final
code:

• Documentation of prompting strategy

277



16. Teaching and Learning

• Reflection on AI collaboration
• Analysis of alternative approaches considered
• Justification of design decisions

16.3.3. Concept Demonstration

Have students demonstrate conceptual understanding separate from code
production:

• Verbal explanations of how their code works
• Identification of potential edge cases
• Analysis of time and space complexity
• Prediction of how code would behave under different inputs

16.3.4. Code Modification Challenges

Test understanding through targeted modification tasks:

• Adding a new feature to existing code
• Optimizing for a different constraint
• Adapting the solution to a different context
• Fixing intentionally introduced bugs

16.3.5. Prompt Engineering Assessment

Directly assess students’ ability to effectively prompt AI tools:

• Provide a difficult problem and evaluate prompting strategy
• Grade the quality and specificity of prompts
• Assess ability to refine prompts based on initial responses
• Evaluate critical thinking about AI-generated solutions

278



16.4. Building a Learning Community

16.4. Building a Learning Community

16.4.1. Collaborative Learning in the AI Era

AI assistants change the dynamics of collaborative learning:

Challenges: - Students may rely on AI rather than peers for help -
Individual work becomes harder to distinguish - Knowledge gaps can be
masked by AI assistance

Opportunities: - Groups can focus on higher-level design discussions -
AI can serve as a common “baseline” for group projects - Students can
learn from each other’s prompting strategies

16.4.2. Peer Learning Strategies

Encourage intentional peer collaboration:

1. Prompt-sharing sessions where students compare effective
prompts

2. Code review workshops focused on evaluating AI-generated code
3. Paired prompting where students collaborate on guiding AI
4. Prompting competitions to solve challenges with the most effective

prompts

16.4.3. Creating a Supportive Environment

Foster an environment that supports learning with AI:

1. Explicitly acknowledge AI use as expected and valuable
2. Establish clear guidelines for appropriate AI collaboration
3. Share success stories of effective AI use
4. Normalize discussions about AI limitations and frustrations
5. Recognize prompting expertise as a valuable skill

279



16. Teaching and Learning

16.5. Case Studies in Educational Settings

16.5.1. Case Study 1: Introductory Programming Course

Context: An introductory Python programming course at a university,
with students who have no prior programming experience.

Approach: The instructor redesigned the course around intentional
prompting principles:

1. Week 1-3: Foundations and AI Introduction

• Basic Python syntax and concepts taught traditionally
• Introduction to AI assistants in week 3
• Assignment: Compare hand-written and AI-generated solutions

2. Week 4-8: Guided AI Collaboration

• Structured prompting templates provided
• Focus on understanding and modifying AI-generated code
• Assignments include documented prompting journey

3. Week 9-15: Independent Problem-Solving

• Complex problems requiring multiple prompting iterations
• Focus on proper problem decomposition
• Final project includes reflection on AI collaboration process

Results: - Students showed stronger conceptual understanding compared
to previous cohorts - More students attempted advanced topics and ex-
tensions - Course completion rate increased by 15% - Students reported
higher confidence in their programming abilities

Key Takeaway: Integrating AI assistants from the beginning, with explicit
instruction on effective usage, led to better learning outcomes than either
banning AI or allowing it without guidance.

280



16.5. Case Studies in Educational Settings

16.5.2. Case Study 2: Advanced Software Engineering Course

Context: A senior-level software engineering course focused on designing
and implementing a complex system over a semester.

Approach: The instructor implemented a “documentation-first” inten-
tional prompting methodology:

1. Project Planning Phase

• Students created detailed specifications before any coding
• AI was used to evaluate specifications for completeness
• Students documented initial architectural decisions

2. Implementation Phase

• Students used the six-step methodology for each component
• Weekly submissions included prompting strategies used
• Peer reviews focused on AI collaboration effectiveness

3. Integration and Testing Phase

• AI used to generate comprehensive test cases
• Students documented where AI testing missed edge cases
• Final submission included reflective analysis

Results: - Projects showed more consistent architecture and documen-
tation - Student teams reported fewer integration issues - Code quality
metrics improved over previous cohorts - Students demonstrated better
ability to explain architectural decisions

Key Takeaway: The intentional, documentation-first approach helped
students maintain control over increasingly complex projects, even with
significant AI assistance.

281



16. Teaching and Learning

16.6. Practical Guide for Educators

16.6.1. Introducing Intentional Prompting in Your Curriculum

Step 1: Self-Education - Familiarize yourself with AI coding assistants
- Practice the six-step methodology on your own projects - Develop your
own prompting skills

Step 2: Curriculum Analysis - Identify which learning objectives remain
essential - Determine where AI can enhance rather than replace learning -
Design new objectives around intentional prompting

Step 3: Assignment Redesign - Convert existing assignments to incor-
porate AI collaboration - Create new assignments focused on prompting
skills - Develop clear guidelines for acceptable AI use

Step 4: Assessment Adaptation - Design assessments that evaluate
process, not just output - Create rubrics that include prompting quality -
Implement verification mechanisms (explanations, modifications)

Step 5: Student Onboarding - Explicitly teach effective prompting
techniques - Provide examples of good and poor AI collaboration - Set
clear expectations for documentation

16.6.2. Sample Lesson Plan: Introduction to Intentional
Prompting

Objective: Introduce students to intentional prompting for programming
tasks

Materials: - Access to an AI coding assistant - Sample programming
problem - Prompting template handout

Lesson Flow:

1. Introduction (15 min)

282



16.7. Practical Guide for Students

• Discuss the limitations of traditional “solution-oriented” prompt-
ing

• Introduce the concept of intentional prompting
• Share examples of effective vs. ineffective prompts

2. Demonstration (20 min)

• Instructor demonstrates solving a problem using intentional
prompting

• Highlight the iterative refinement process
• Show how to evaluate and improve AI-generated code

3. Guided Practice (30 min)

• Students work in pairs on a simple programming task
• Using provided prompting templates
• Instructor circulates to provide feedback

4. Reflection and Discussion (15 min)

• Students share what worked and what didn’t
• Discuss patterns in effective prompts
• Address common misconceptions

5. Independent Practice (Homework)

• Students solve a new problem using intentional prompting
• Document their prompting journey
• Reflect on what they learned about effective prompting

16.7. Practical Guide for Students

16.7.1. Maximizing Learning with AI Assistance

Develop an Intentional Learning Mindset - Focus on understanding
concepts, not just completing assignments - Use AI to explore alternative

283



16. Teaching and Learning

approaches, not just get answers - Reflect on what you’re learning through
AI interactions

Document Your Learning Journey - Keep a prompting journal record-
ing effective prompts - Note concepts that were unclear and how AI helped
clarify them - Track your progress in prompting effectiveness

Balance AI Assistance with Independent Work - Try solving prob-
lems independently before consulting AI - Use AI to verify your under-
standing, not replace it - Deliberately practice skills that AI can’t provide
(debugging, testing)

Leverage AI for Learning Acceleration - Use AI to explain concepts
in multiple ways - Ask AI to generate practice problems on topics you’re
struggling with - Have AI explain the “why” behind its recommendations

16.7.2. Self-Assessment Questions

Students can use these questions to gauge their intentional prompting
skills:

1. Can I explain the code I submitted, including its logic and potential
edge cases?

2. Do I understand why the AI suggested certain approaches over others?
3. Can I modify the solution to work under different constraints?
4. Am I able to identify limitations or potential improvements in AI-

generated code?
5. Can I effectively guide AI through complex problems using systematic

prompting?

284



16.8. Key Takeaways

16.8. Key Takeaways

• The educational focus should shift from syntax to intentional collab-
oration

• Assignments should incorporate AI explicitly rather than trying to
be “AI-proof”

• Assessment should focus on process, understanding, and prompting
skills

• Both educators and students need new strategies for effective learning
with AI

• Intentional prompting principles provide a framework for teaching
programming in the AI era

• Building learning communities around AI collaboration enhances
educational outcomes

16.9. Moving Forward

In the final chapter, we’ll explore the future of intentional prompting as AI
technology continues to evolve, examining emerging trends and preparing
for the next evolution of human-AI programming collaboration.

285





17. Future Directions

As we reach the conclusion of this book, it’s important to look ahead at how
intentional prompting might evolve as AI capabilities continue to advance.
This chapter explores emerging trends in AI-assisted development, potential
shifts in programming paradigms, and strategies for maintaining the human
element in an increasingly AI-powered development landscape.

17.1. Emerging AI Capabilities

17.1.1. Beyond Text-Based Interfaces

Current AI coding assistants primarily interact through text-based inter-
faces, but this is likely to change:

17.1.1.1. Multimodal Interactions

Future AI assistants will likely incorporate:

• Visual programming interfaces that blend graphical and text-
based interaction

• Voice-based coding where spoken instructions translate to code
• Diagram-to-code conversion where architecture diagrams become

implementation scaffolding
• Code-to-visualization generation where code is automatically

visualized for better understanding

287



17. Future Directions

These multimodal capabilities will require adaptations to intentional
prompting practices, with greater emphasis on clear specification and
visualization of intent.

17.1.1.2. Contextual Awareness

AI assistants are becoming increasingly aware of their operational context:

• Project-wide understanding beyond individual files
• Development history awareness including past decisions and

their rationale
• Developer preference modeling that adapts to individual coding

styles
• Team convention adherence that ensures consistency across con-

tributors

For intentional prompting, this means prompting strategies will need to
focus more on high-level goals and constraints, while the AI handles more
of the implementation details.

17.1.2. Increasing Autonomy and Agentic Programming

AI systems are gradually moving toward greater autonomy in coding tasks,
leading to what’s known as “agentic programming”—where AI agents can
autonomously perform complex development tasks with minimal human
intervention:

17.1.2.1. Autonomous Coding Capabilities

• Self-directed exploration of solution spaces
• Automated testing and verification of generated code
• Self-debugging and refinement of initial solutions

288



17.1. Emerging AI Capabilities

• Proactive suggestion of improvements and optimizations

This increased autonomy will shift intentional prompting toward a supervi-
sory role, where human developers focus on problem definition, architectural
decisions, and quality assurance rather than implementation details.

17.1.2.2. AI Pairing and Collaboration

Future development environments may feature:

• Multiple specialized AIs with different expertise areas
• AI-to-AI collaboration where different models handle different

aspects of development
• Continuous AI presence during the entire development process
• Persistent learning from team interactions and feedback

Intentional prompting in this environment will involve orchestrating these
AI collaborators effectively, ensuring they work toward cohesive solutions.

17.1.2.3. The Essential Role of Human Oversight in Agentic Systems

As AI development agents become more sophisticated, research has identi-
fied critical intervention points where human oversight remains essential:

Requirements Phase - AI Role: Convert user stories to technical spec-
ifications - Human Role: Validate business alignment and feasibility of
proposed approaches

Design Phase - AI Role: Generate architecture diagrams from spec-
ifications - Human Role: Evaluate maintainability and technical debt
implications

Implementation - AI Role: Auto-complete functions with context aware-
ness - Human Role: Ensure compliance with security protocols and organi-
zational standards

289



17. Future Directions

Deployment - AI Role: Auto-scale and configure infrastructure - Human
Role: Final approval for production releases

Research shows that even the most advanced AI systems face fundamental
limitations. They struggle with precision despite excellence in general-
ization, encounter difficulties with large-scale tasks despite competence
with smaller ones, and demonstrate incomplete understanding of physical
and business realities. These limitations highlight why human oversight in
agentic systems is not merely beneficial but essential.

Effective human oversight includes:

1. Establishing clear protocols and roles for when and how human
intervention should occur

2. Continuous training and development for oversight personnel
3. Fostering collaboration between AI experts and domain specialists
4. Implementing robust monitoring tools and evaluation frame-

works

The future of intentional prompting will likely involve more sophisticated
techniques for providing this essential oversight, ensuring that increasingly
autonomous AI systems remain aligned with human goals, values, and
quality standards.

17.2. Evolving Programming Paradigms

17.2.1. From Code Writing to Code Curation

The fundamental activity of programming is shifting from writing code to
curating it:

290



17.2. Evolving Programming Paradigms

17.2.1.1. Specification-First Development

• Detailed specifications become the primary artifact
• Automated implementation derived from specifications
• Human review and refinement of generated code
• Iterative specification improvement based on implementation

feedback

Intentional prompting in this paradigm emphasizes clear articulation of
requirements and constraints, with less focus on implementation syntax.

17.2.1.2. Quality-Oriented Development

• Focus on correctness criteria rather than implementation
• Property-based specifications that define behavior boundaries
• Automated verification against properties rather than manual

testing
• Formal methods becoming more accessible through AI interpreta-

tion

This shift requires developing skills in specifying quality attributes and
verification criteria rather than algorithmic details.

17.2.2. New Programming Languages and Tools

AI capabilities are influencing the design of programming languages and
development tools:

17.2.2.1. AI-Native Languages

• Natural language programming becoming more feasible
• Intent-based syntax that focuses on what, not how

291



17. Future Directions

• Adaptable abstraction levels that adjust to developer expertise
• Bidirectional translation between natural language and formal

code

Intentional prompting practices will need to evolve to leverage these new
language paradigms effectively.

17.2.2.2. Integrated AI Development Environments

• Continuous AI collaboration throughout the development work-
flow

• Predictive development that anticipates next steps
• Automated refactoring and optimization based on semantic

understanding
• Intelligent knowledge integration from documentation and com-

munity resources

These environments will require new skills in guiding AI assistance effec-
tively throughout the development lifecycle.

17.3. Preparing for Future Changes

17.3.1. Skill Evolution for Developers

As AI capabilities advance, the most valuable developer skills will shift:

17.3.1.1. Emerging Critical Skills

1. System design and architecture - Defining cohesive, maintainable
systems

2. Problem formulation - Precisely specifying what needs to be solved

292



17.3. Preparing for Future Changes

3. Solution evaluation - Critically assessing generated solutions
4. Adaptation and integration - Combining AI-generated compo-

nents effectively
5. Domain modeling - Translating real-world complexity into compu-

tational terms

Intentional prompting principles provide a foundation for developing these
skills, with increasing emphasis on architecture and evaluation.

17.3.1.2. Continuous Learning Strategies

To remain effective as AI capabilities evolve:

1. Focus on fundamentals - Core concepts remain relevant even as
implementation details change

2. Practice intentional prompting - Develop precise communication
with AI systems

3. Engage with new paradigms - Experiment with emerging lan-
guages and methodologies

4. Build cross-disciplinary knowledge - Combine programming
with domain expertise

5. Cultivate creative problem-solving - Develop skills that comple-
ment rather than compete with AI

17.3.2. Organizational Adaptation

Organizations will need to adapt their development processes:

17.3.2.1. Evolving Team Structures

• AI specialists who optimize AI collaboration across teams
• Prompt engineers who develop effective prompting strategies

293



17. Future Directions

• Integration architects who ensure cohesive solutions
• Quality assurance evolution toward specification verification

17.3.2.2. Workflow Transformation

• Specification-centric processes replacing code-centric workflows
• Continuous AI collaboration throughout the development lifecy-

cle
• Balanced human-AI responsibility with clear accountability
• Knowledge management becoming increasingly critical

Intentional prompting principles can guide these organizational transfor-
mations, ensuring that human expertise remains central despite increasing
automation.

17.4. Maintaining the Human Element

17.4.1. Ethical Considerations

As AI takes on more programming responsibilities, ethical considerations
become increasingly important:

17.4.1.1. Responsibility and Accountability

• Clear attribution of AI vs. human contributions
• Transparency in AI assistance for regulatory compliance
• Ethical review processes for AI-generated solutions
• Professional responsibility for AI-assisted outcomes

294



17.4. Maintaining the Human Element

17.4.1.2. Bias and Fairness

• Awareness of AI biases in generated code
• Proactive fairness assessment of solutions
• Diverse human oversight to detect potential issues
• Inclusive design principles throughout development

Intentional prompting practices should incorporate explicit ethical review
steps to address these concerns.

17.4.2. Human Comparative Advantages

Despite advancing AI capabilities, humans maintain several critical advan-
tages:

17.4.2.1. Enduring Human Strengths

1. Contextual understanding - Grasping the broader purpose and
impact of software

2. Ethical judgment - Evaluating moral implications of technical
decisions

3. Creative problem-solving - Finding novel approaches to unprece-
dented challenges

4. Empathetic design - Deeply understanding user needs and experi-
ences

5. Strategic thinking - Aligning technical decisions with long-term
goals

Intentional prompting should increasingly focus on leveraging these uniquely
human capabilities while delegating algorithmically definable tasks to AI.

295



17. Future Directions

17.4.2.2. Meaningful Human Contribution

To ensure programming remains a fulfilling human activity:

1. Focus on high-impact decisions where human judgment adds
value

2. Cultivate creativity in problem-solving approaches
3. Engage with ethical dimensions of technical decisions
4. Prioritize human-centered design considerations
5. Develop cross-disciplinary expertise combining programming

with domain knowledge

17.5. Vision for Intentional Prompting’s Evolution

17.5.1. Short-Term Evolution (1-3 Years)

In the near future, intentional prompting will likely adapt to:

• More comprehensive code generation capabilities
• Better context awareness across codebases
• Improved natural language understanding
• Initial multimodal interaction capabilities

Key adaptations will include:

1. More refined prompting techniques for whole-component generation
2. Greater emphasis on specification and architectural design
3. Increased focus on evaluation and integration skills
4. Enhanced collaborative workflows combining human and AI strengths

296



17.5. Vision for Intentional Prompting’s Evolution

17.5.2. Medium-Term Evolution (3-7 Years)

Looking further ahead, we may see:

• Natural language becoming a primary programming interface
• AI agents capable of autonomous implementation of components
• Sophisticated AI collaboration networks in development
• Formal verification becoming mainstream through AI assistance

Intentional prompting will likely evolve toward:

1. Architecture and system design as primary human activities
2. Specification languages replacing traditional programming languages
3. Orchestration of multiple specialized AI collaborators
4. Quality assurance through formal specification rather than testing

17.5.3. Long-Term Vision (7+ Years)

Though speculative, longer-term developments might include:

• Programming primarily through intent specification
• AI systems capable of end-to-end application development
• Symbiotic human-AI development partnerships
• New programming paradigms built specifically for human-AI collabo-

ration

The core principles of intentional prompting—maintaining human un-
derstanding and control while leveraging AI capabilities effectively—will
remain relevant even as the specific practices evolve.

297



17. Future Directions

17.6. A Personal Development Roadmap

17.6.1. Building Your Intentional Prompting Skills

To prepare for the future of programming, consider this development
roadmap:

17.6.1.1. Foundational Skills

1. Master the six-step methodology for intentional prompting
2. Develop effective prompting techniques for different program-

ming tasks
3. Practice critical evaluation of AI-generated code
4. Build architectural thinking skills for component and system

design
5. Cultivate test-driven thinking to ensure solution quality

17.6.1.2. Advancing Your Practice

1. Experiment with emerging AI coding assistants to understand
their capabilities

2. Develop domain-specific prompting strategies for your areas
of expertise

3. Create personal libraries of effective prompts for common
tasks

4. Incorporate intentional documentation practices in your work-
flow

5. Contribute to open standards for human-AI development collab-
oration

298



17.7. Key Takeaways

17.6.1.3. Leading the Evolution

1. Explore new programming paradigms that leverage AI capabil-
ities

2. Develop team practices for effective AI collaboration
3. Establish ethical guidelines for responsible AI use in development
4. Share your experiences through writing, speaking, or teaching
5. Participate in shaping the future of human-AI programming

17.6.2. Continuous Adaptation

The most important skill for the future will be adaptability. By ground-
ing yourself in intentional prompting principles while remaining open to
evolving techniques, you’ll be well-positioned to thrive in the changing
landscape of software development.

17.7. Key Takeaways

• AI capabilities will continue to evolve, with increased contextual
understanding, multimodal interactions, and autonomy

• Programming paradigms are shifting from code writing to code cura-
tion and verification

• Developer skills are evolving toward architecture, specification, and
solution evaluation

• Organizations need to adapt team structures and workflows for effec-
tive AI collaboration

• Maintaining the human element requires focus on our unique capa-
bilities and ethical considerations

• Intentional prompting principles provide a foundation for navigating
these changes effectively

299



17. Future Directions

17.8. Intentional Prompting Beyond Programming

While this book has focused primarily on applying intentional prompting
principles to programming tasks, the core concepts of intentional prompting
have far broader applications across various domains and activities.

17.8.1. Universal Principles of AI Collaboration

The fundamental principles of intentional prompting that we’ve explored—
maintaining human agency, focusing on understanding, and prioritizing
process over output—apply universally to any human-AI collaboration:

17.8.1.1. In Creative Fields

• Writing: Using AI to brainstorm, refine, and edit written content
while maintaining a unique voice

• Design: Directing AI to explore visual concepts while preserving
artistic intent and coherence

• Music: Collaborating with AI on composition while maintaining
musical identity and expression

• Film and Animation: Using AI for technical aspects while humans
direct narrative and emotional elements

17.8.1.2. In Knowledge Work

• Research: Employing AI to analyze data and literature while hu-
mans guide inquiry and interpret significance

• Law: Using AI for precedent research and document preparation
while humans handle judgment and argumentation

• Medicine: Applying AI for analysis and pattern recognition while
physicians maintain diagnostic responsibility

300



17.8. Intentional Prompting Beyond Programming

• Education: Utilizing AI to customize learning materials while edu-
cators focus on motivation and conceptual guidance

17.8.1.3. In Business and Management

• Strategic Planning: Using AI to analyze trends and options while
humans make value-based decisions

• Project Management: Employing AI for scheduling and resource
allocation while humans handle stakeholder relationships

• Marketing: Utilizing AI for data analysis and content generation
while humans direct brand voice and strategy

• Customer Service: Using AI for routine interactions while humans
handle complex or sensitive situations

17.8.2. The Five Principles in Any Domain

The five core principles of intentional AI collaboration transcend specific
methodologies and can be applied in any context:

1. Human-led workflows: Regardless of domain, humans should
establish goals, define parameters, and make final decisions

2. Critical evaluation: All AI outputs should be thoughtfully assessed
based on domain expertise and context

3. Iterative collaboration: The process of refinement through feed-
back applies across all creative and analytical activities

4. Domain-appropriate trust: Every field has aspects where AI
excels and where human judgment is essential

5. Skill complementarity: The most effective collaborations leverage
both AI and human strengths appropriately

301



17. Future Directions

17.8.3. The Future of Human-AI Partnership

As AI capabilities continue to evolve, these principles will only become
more important. Future systems may offer:

• More seamless multimodal interaction across text, voice, images,
and other media

• Greater domain-specific expertise in specialized fields
• Enhanced contextual awareness of projects, goals, and con-

straints
• Increased autonomy for well-defined tasks

However, the need for intentional human direction will remain essential.
The most successful individuals and organizations will be those who develop
effective practices for intentional collaboration with increasingly capable
AI systems while maintaining human purpose, creativity, and ethical
judgment.

17.9. Conclusion

As we conclude this exploration of intentional prompting, it’s clear that
the fundamental relationship between human developers and AI assistants
will continue to evolve. What won’t change is the need for a thoughtful,
structured approach to leveraging AI capabilities while maintaining human
understanding and control.

The six-step methodology and intentional prompting techniques presented
in this book provide a foundation that can adapt to emerging capabili-
ties and paradigms. By focusing on process over output, understanding
over implementation, and human judgment over automation, intentional
prompting offers a path forward that embraces AI assistance while preserv-
ing the essence of what makes programming a uniquely human creative
endeavor.

302



17.9. Conclusion

Importantly, the methodology addresses many common objections to using
LLMs in programming. For those concerned about the ambiguity of
natural language, intentional prompting provides structured frameworks
and progressive disambiguation techniques that bridge natural language
and formal code. For those worried about the non-deterministic nature of
LLMs, the methodology establishes clear evaluation criteria and testing
practices that ensure reliability despite variability in outputs. And for
those skeptical of AI’s impact on learning and skill development, intentional
prompting’s focus on understanding over copying ensures that developers
continue to build expertise rather than becoming dependent on AI.

The power of intentional prompting comes from recognizing that LLMs
have inherited human problem-solving patterns through their training
data. Our methodology doesn’t fight against this trait but leverages it by
providing procedural frameworks that activate latent knowledge in both the
human and the AI. This collaborative approach represents a middle ground
between uncritical acceptance and outright rejection of AI assistance—a
balanced path that maximizes benefits while minimizing risks.

As we move toward increasingly autonomous agentic programming systems,
intentional prompting becomes not less but more essential. These systems
excel at approximation and pattern matching but struggle with precision.
They demonstrate competence with small-scale tasks while faltering with
larger ones. They reveal an incomplete understanding of both physical
and business realities. All these limitations highlight why human oversight
through structured methodologies remains necessary.

The six-step methodology provides a framework not just for individual
programmers but for organizations implementing AI oversight. It offers
clear intervention points where human judgment and domain knowledge can
guide AI agents toward optimal solutions. By maintaining this human-in-
the-loop approach, organizations can harness the efficiency of AI automation
while mitigating its risks through informed, intentional human direction.

While we’ve focused primarily on programming, the principles of intentional
collaboration with AI will extend across all domains of human creativity

303



17. Future Directions

and problem-solving. By developing these skills now, you’re preparing
not just for current AI tools, but for the next generation of human-AI
partnership in programming and beyond.

304



Acknowledgments

This book represents a collaborative effort involving both human creativity
and artificial intelligence assistance. I would like to acknowledge the con-
tributions of various individuals and tools that made this work possible.

Author

Michael Borck (michael@borck.me) - Lead author and creator of the
Intentional Prompting methodology. Michael developed the core concepts,
structured the book, and wrote the original content.

AI Assistance

This book was developed with assistance from several AI tools:

• Claude by Anthropic - Provided editorial suggestions, helped refine
concepts, and assisted with book structure and content development.

• Midjourney AI - Generated the cover artwork based on prompts
describing the book’s themes of human-AI collaboration.

305



Acknowledgments

Technical Production

• Quarto - Used for document formatting and book generation
• GitHub - Used for version control and collaboration
• GitHub Pages - Hosts the online version of the book

Special Thanks

Special thanks to the broader AI and programming education community
whose ongoing discussions about effective AI collaboration helped shape
many of the ideas presented in this book.

Note: While AI tools were used in the production of this book, all content
reflects the author’s intentions and has been reviewed by humans. The
use of AI in creating this book about AI-assisted programming reflects the
principles of intentional prompting discussed within.

306



A. Prompt Templates

This appendix provides a collection of prompt templates that can be used
as starting points for different programming tasks. These templates follow
the intentional prompting patterns discussed in Chapter 10.

A.1. Problem Analysis Templates

A.1.1. Understanding Requirements

I need to write a program that [brief description of the problem].

To make sure I understand the requirements correctly:
1. Is the goal to [restate the problem in your own words]?
2. What inputs should the program accept?
3. What should the output format be?
4. Are there any specific constraints or edge cases I should consider?

A.1.2. Exploring Problem Complexity

I'm trying to understand the complexity of [problem description].

1. What is the theoretical time complexity of solving this problem?
2. Are there any known algorithms for this type of problem?
3. What are the trade-offs between different approaches?

307



A. Prompt Templates

A.2. Learning-Oriented Templates

A.2.1. Concept Explanation

I'm trying to understand [programming concept].

1. Can you explain this concept in simple terms?
2. What problem does this concept solve?
3. Can you show a simple example of it in use?
4. What are common mistakes or misconceptions about this concept?

A.2.2. Code Comprehension

I'm trying to understand this code:

[paste code]

1. Can you explain what this code does, line by line?
2. What is the purpose of [specific variable or function]?
3. Are there any potential issues or inefficiencies in this implementation?

A.3. Development Templates

A.3.1. Incremental Development

I'm building a [description of program].

So far, I've implemented:
[describe current functionality or paste code]

Now, I want to add [new feature]. Can you help me:

308



A.4. Debugging Templates

1. Design an approach for this feature
2. Integrate it with my existing code
3. Test that it works correctly

A.3.2. Refactoring

I have this working code:

[paste code]

I'd like to refactor it to improve [readability/performance/maintainability].
Specifically, I'm concerned about [specific issue].

Can you suggest a better approach while maintaining the same functionality?

A.4. Debugging Templates

A.4.1. Error Diagnosis

I'm getting this error when running my code:

[paste error message]

Here's the relevant code:

[paste code]

1. What's causing this error?
2. How can I fix it?
3. How could I have prevented this error?

309



A. Prompt Templates

A.4.2. Performance Issue

My code is running slower than expected:

[paste code]

1. Can you identify any performance bottlenecks?
2. How could I optimize this code?
3. Are there any built-in functions or libraries that would help?

A.5. Architecture Templates

A.5.1. Design Pattern Selection

I'm building a system that needs to [describe functionality].

The key requirements are:
- [requirement 1]
- [requirement 2]
- [requirement 3]

What design pattern(s) might be appropriate for this situation?
For each suggested pattern, could you explain:
1. Why it fits this case
2. How I would implement it
3. Potential drawbacks or limitations

A.5.2. Component Design

I'm designing a [component type] that will [component purpose].

310



A.6. Testing Templates

It needs to interact with:
- [related component 1]
- [related component 2]

Can you help me design this component with:
1. A clear interface (methods/functions it should expose)
2. Internal data structures
3. Error handling approach
4. Testing strategy

A.6. Testing Templates

A.6.1. Test Case Generation

I've written this function:

[paste function]

Can you help me design a comprehensive set of test cases that cover:
1. Normal operation
2. Edge cases
3. Error conditions
4. Performance considerations

A.6.2. Testing Strategy

I'm building a [type of application] and need to develop a testing strategy.

The key features are:
- [feature 1]
- [feature 2]

311



A. Prompt Templates

- [feature 3]

What types of tests should I implement (unit, integration, etc.)?
For each type, what specific aspects should I focus on testing?

A.7. Using These Templates Effectively

These templates are starting points, not rigid formulas. Adapt them to
your specific needs and combine different templates as appropriate. The
most effective prompting often involves:

1. Starting with a clear problem statement
2. Providing relevant context
3. Asking specific, focused questions
4. Following up with refinement questions based on the AI’s response

Remember that the goal isn’t just to get a solution, but to engage in a
dialogue that deepens your understanding and improves your programming
skills.

312



B. Common Pitfalls and Solutions

When working with AI coding assistants, certain patterns of challenges
tend to emerge. This appendix catalogs common pitfalls in the inten-
tional prompting process and provides practical strategies for avoiding or
addressing them.

B.1. Over-Reliance on AI

B.1.1. Symptoms

• Accepting AI-generated code without critical evaluation
• Inability to explain how your code works
• Discomfort when working without AI assistance
• Decreasing ability to solve problems independently

B.1.2. Root Causes

• Convenience of immediate solutions
• Pressure to deliver quickly
• Gradual atrophy of independent problem-solving skills
• Incomplete understanding of the problem domain

313



B. Common Pitfalls and Solutions

B.1.3. Solutions

B.1.3.1. Intentional Skill Building

• Schedule regular “AI-free” coding sessions to maintain core skills
• Implement a personal rule to solve problems manually first, then

verify with AI
• Create deliberate learning challenges in unfamiliar areas

B.1.3.2. Critical Evaluation Process

• Establish a personal checklist for evaluating AI-generated code
• Always trace through at least one test case manually
• Ask “why” questions about design decisions in AI-generated code
• Look for potential edge cases that might not be handled

B.1.3.3. Balance Strategies

• Use the six-step methodology to ensure you understand the problem
before seeking AI solutions

• Distinguish between areas where you need to build expertise (limit
AI use) and areas where you can leverage AI more heavily

• Set clear boundaries for when and how you use AI assistance

B.2. Unclear Prompt Formulation

B.2.1. Symptoms

• Receiving irrelevant or incorrect solutions
• Needing many iterations to get useful responses

314



B.2. Unclear Prompt Formulation

• Finding yourself frustrated with AI “not understanding” what you
want

• Receiving overly generic or simplistic answers

B.2.2. Root Causes

• Ambiguous problem descriptions
• Missing context or requirements
• Unexpressed assumptions
• Imprecise terminology

B.2.3. Solutions

B.2.3.1. Structured Prompting Framework

• Use the templates from Appendix A as starting points
• Break complex requirements into clear, specific points
• Include explicit constraints and edge cases
• Specify the level of detail needed in the response

B.2.3.2. Context Enhancement

• Provide relevant background information
• Include code snippets that show the context
• Specify the programming language and framework
• Describe the broader system architecture when relevant

315



B. Common Pitfalls and Solutions

B.2.3.3. Iterative Refinement

• Start with a basic prompt and refine based on initial responses
• Use phrases like “Let me clarify…” to correct misunderstandings
• Build upon partial successes rather than completely changing ap-

proach
• Maintain a library of effective prompts for common tasks

B.3. Accepting Incorrect Solutions

B.3.1. Symptoms

• Discovering bugs after implementation that were present in the AI
suggestion

• Receiving user reports of edge case failures
• Finding that AI-generated solutions don’t integrate well with existing

code
• Code reviews identifying fundamental flaws in approach

B.3.2. Root Causes

• Insufficient validation of proposed solutions
• Misplaced trust in AI capabilities
• Pressure to deliver quickly
• Gaps in your own understanding of requirements

316



B.4. Losing Track of the Big Picture

B.3.3. Solutions

B.3.3.1. Systematic Verification

• Always test AI-generated code with multiple inputs, especially edge
cases

• Review security implications, particularly for input handling and
data access

• Check for performance issues with realistic data volumes
• Verify integration points with existing systems

B.3.3.2. Understanding Before Implementation

• Request explanations of unfamiliar patterns in generated code
• Step through complex algorithms manually with example data
• Compare against alternative approaches
• Ensure you can explain every part of the solution yourself

B.3.3.3. Incremental Adoption

• Integrate AI-generated code in small, testable chunks
• Start with non-critical components to build confidence
• Implement monitoring for new components to catch issues early
• Create comprehensive tests before implementing AI suggestions

B.4. Losing Track of the Big Picture

B.4.1. Symptoms

• Solutions that solve immediate problems but create architectural
issues

317



B. Common Pitfalls and Solutions

• Inconsistent patterns across different parts of the codebase
• Difficulty explaining how components fit together
• Growing technical debt from expedient but uncoordinated decisions

B.4.2. Root Causes

• Focus on tactical code generation rather than strategic design
• AI’s limited context window and understanding of full system
• Solving problems in isolation without system-wide perspective
• Missing architectural guidelines for AI collaboration

B.4.3. Solutions

B.4.3.1. Architectural Discipline

• Establish clear architectural principles to guide AI prompting
• Regularly review how individual components fit into the overall

system
• Maintain up-to-date architecture diagrams to reference during devel-

opment
• Use the six-step methodology to ensure each solution aligns with

system goals

B.4.3.2. Documentation-First Approach

• Document design decisions before implementing them
• Create clear interface specifications before coding
• Maintain a “source of truth” for architectural patterns
• Implement an architecture decision record (ADR) process

318



B.5. Ethical and Legal Concerns

B.4.3.3. System-Level Review

• Periodically step back to assess the entire system
• Schedule “architectural reviews” to identify drift from intended design
• Use visualization tools to understand system evolution
• Consider how individual changes affect system properties (perfor-

mance, security, maintainability)

B.5. Ethical and Legal Concerns

B.5.1. Symptoms

• Uncertainty about code ownership and attribution
• Potential license violations from AI-suggested code
• Reuse of code with unclear provenance
• Privacy or security implications in generated solutions

B.5.2. Root Causes

• Unclear understanding of AI training data sources
• Limited transparency in how AI generates responses
• Evolving legal landscape around AI-generated content
• Lack of established ethics frameworks for AI coding assistants

B.5.3. Solutions

B.5.3.1. Responsible AI Usage

• Understand how your AI assistant was trained and what data it uses
• Review AI-generated code for potential intellectual property issues
• Follow your organization’s guidelines for AI use

319



B. Common Pitfalls and Solutions

• Consider the ethical implications of automated decision-making in
your code

B.5.3.2. Documentation and Transparency

• Document when and how AI assistance was used
• Maintain clear attribution for code sources
• Keep records of significant prompts used in development
• Be transparent with stakeholders about AI’s role in development

B.5.3.3. Verification Processes

• Implement review processes specifically for AI-generated code
• Check for known security vulnerabilities in suggested solutions
• Verify that solutions meet regulatory requirements
• Consider third-party audits for critical systems

B.6. Prompt Pattern Case Studies

B.6.1. Case Study 1: Debugging a Complex Algorithm

B.6.1.1. Problematic Approach

Initial prompt:

Fix this sorting algorithm, it's not working correctly.

[code snippet]

Issues: - Vague problem description - No information about how it’s failing
- No context about requirements or constraints

320



B.6. Prompt Pattern Case Studies

B.6.1.2. Improved Approach

Better prompt:

I'm debugging this merge sort implementation that fails when the input contains duplicate values.

[code snippet]

Specific issues:
1. When input contains duplicates (e.g., [3,1,3,2]), it produces [1,2,3] instead of [1,2,3,3]
2. It works correctly for inputs without duplicates

I suspect the issue is in the merging step, but I'm not sure exactly what's wrong.
Can you help identify the bug and explain how to fix it?

Improvements: - Specific algorithm identified (merge sort) - Clear de-
scription of the failure case - Example input and expected output provided
- Indication of where the bug might be located

B.6.2. Case Study 2: Implementing a New Feature

B.6.2.1. Problematic Approach

Initial prompt:

Write a user authentication system for my web app.

Issues: - Extremely broad scope - No information about the technology
stack - No specific requirements or constraints - No context about the
existing application

321



B. Common Pitfalls and Solutions

B.6.2.2. Improved Approach

Better prompt:

I need to implement user authentication for a React/Node.js web application.

Requirements:
- JWT-based authentication
- Support for email/password login
- Password reset functionality
- Role-based authorization (admin and regular users)
- Integration with existing MongoDB user collection

Current user schema:
```json
{

"email": String,
"name": String,
"created_at": Date

}

I’d like to: 1. Update the user schema to support authentication 2.
Implement the backend endpoints for login, registration, and password
reset 3. Create a middleware for protecting routes based on authentication
4. Set up the frontend components for the login flow

Can you help me with the schema design and backend implementation
first?

Improvements:
- Specific technology stack identified
- Clear, detailed requirements

322

B.6. Prompt Pattern Case Studies

- Existing schema provided for context
- Scope broken down into manageable parts
- Clear starting point specified

Confusing Prompt Engineering with Intentional Prompting

Symptoms

- Focusing exclusively on crafting the perfect prompt to get complete solutions
- Neglecting the manual work and understanding phases of the methodology
- Measuring success solely by the quality of AI outputs rather than learning outcomes
- Minimal critical evaluation of AI-generated solutions
- Skipping the six-step methodology and moving directly to implementation

Root Causes

- Misconception that intentional prompting is just about creating better prompts
- Prioritizing short-term efficiency over long-term understanding
- Not fully grasping the educational purpose of the intentional prompting methodology
- Confusing the means (good prompts) with the end (developer understanding and growth)

Solutions

Clarify the Distinction

- Remember that prompt engineering is a set of techniques while intentional prompting is a complete methodology
- Recognize that prompt engineering focuses on getting optimal outputs while intentional prompting focuses on the human development process
- Understand that prompt engineering is a component of intentional prompting, not a replacement for it

Balance Output and Process

- Follow the complete six-step methodology even when it seems faster to skip steps
- Evaluate success based on both the quality of the solution AND your understanding of it
- Set aside time specifically for the "Work by Hand" and "Test with Data" steps, which are often neglected

323

B. Common Pitfalls and Solutions

- Document your learning insights separate from code outputs

Adopt a Learning Mindset

- Ask AI to explain its solutions rather than just accepting them
- Challenge yourself to modify and extend AI-generated code
- Practice explaining solutions to others without referring to AI explanations
- Identify gaps in your understanding and use AI to fill them deliberately

Key Takeaways

- **Be intentional about balancing AI assistance with skill development** to maintain your capabilities
- **Invest time in clear, detailed prompts** to save time in iterative refinement
- **Always verify AI-generated solutions** through testing and manual review
- **Maintain system-level perspective** when implementing individual components
- **Address ethical and legal concerns proactively** through documentation and transparent processes
- **Learn from failures** by analyzing and improving your prompting approach
- **Distinguish between prompt engineering techniques and the intentional prompting methodology**

By recognizing and addressing these common pitfalls, you can maximize the benefits of AI assistance while avoiding its potential drawbacks.

`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImFwcGVuZGljZXMifQ== -->`{=html}

```{=html}
<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImFwcGVuZGljZXMiLCJib29rSXRlbVR5cGUiOiJjaGFwdGVyIiwiYm9va0l0ZW1OdW1iZXIiOjMsImJvb2tJdGVtRmlsZSI6ImFwcGVuZGljZXMvYWktdG9vbC1jb21wYXJpc29uLnFtZCIsImJvb2tJdGVtRGVwdGgiOjF9 -->

324



C. AI Tool Comparison

The landscape of AI coding assistants is rapidly evolving, with new tools
and capabilities emerging regularly. This appendix provides a compar-
ative analysis of major AI coding tools available at the time of writing,
highlighting their strengths, limitations, and optimal use cases.

C.1. Approaches to AI-Assisted Programming

Before comparing specific tools, it’s valuable to understand the different
approaches to AI-assisted programming. Each represents a distinct phi-
losophy about how humans and AI should collaborate in the development
process.

C.1.1. Comparative Framework for AI Programming Approaches

325



C. AI Tool Comparison

As-
pect

Intentional
Prompting

Prompt
Engineer-
ing

Pseu-
docode for
LLMs

Agentic
Program-
ming

Vibe
Program-
ming/Coding

Pri-
mary
Goal

Human
understand-
ing, skill
develop-
ment, and
quality
output

Optimal
AI
responses
through
precise in-
structions

Clear com-
munication
of algorith-
mic intent

Au-
tonomous
task
completion

Fast output
with minimal
effort

Un-
der-
ly-
ing
Phi-
los-
o-
phy

AI as col-
laborative
partner
with
human as
director

AI as
powerful
tool that
requires
proper in-
structions

Bridge
between
natural
language
and formal
code

AI as au-
tonomous
agent with
human
oversight

AI as
solution
provider

Core
Method-
ol-
ogy

Six-step
structured
approach
(restate,
identify,
work by
hand, pseu-
docode,
convert,
test)

Technique-
based
(zero-shot,
few-shot,
chain-of-
thought)

Semi-
formal
notation
with
structured
patterns

Agent-
driven
workflows
with inter-
vention
points

Conversa-
tional,
iterative
prompting

326



C.1. Approaches to AI-Assisted Programming

As-
pect

Intentional
Prompting

Prompt
Engineer-
ing

Pseu-
docode for
LLMs

Agentic
Program-
ming

Vibe
Program-
ming/Coding

Hu-
man
In-
volve-
ment

High;
human
directs
process and
makes key
decisions

Medium;
human
crafts
prompts
and
evaluates
responses

Medium-
high;
human
expresses
intent
through
structured
pseu-
docode

Low-
medium;
human
provides
oversight
and
validation

Low; human
describes
desired
outcome

Learn-
ing
Out-
come

Progressive
skill devel-
opment
and deeper
understand-
ing

Improved
prompt
crafting
skills

Better
algorithm
communi-
cation
skills

System
design and
oversight
capabili-
ties

Minimal
technical
growth

Knowl-
edge
Trans-
fer

Strong;
process
facilitates
team
understand-
ing

Limited;
often
relies on
prompt
expertise

Medium;
standard-
ized
pseu-
docode
aids
sharing

Limited;
often
creates
“black
boxes”

Weak; often
creates
knowledge
silos

Code
Qual-
ity
Fo-
cus

High;
emphasizes
understand-
ing,
maintain-
ability

Medium;
focuses
on cor-
rectness
over style

Medium-
high;
promotes
algorith-
mic clarity

Variable;
depends
on agent
capabili-
ties

Low;
prioritizes
working
functionality

327



C. AI Tool Comparison

As-
pect

Intentional
Prompting

Prompt
Engineer-
ing

Pseu-
docode for
LLMs

Agentic
Program-
ming

Vibe
Program-
ming/Coding

Ideal
Use
Cases

Educa-
tional
contexts,
complex
systems,
team envi-
ronments

Specific
technical
problems,
content
genera-
tion

Complex
algorithms,
cross-
language
implemen-
tation

Routine
tasks, code
generation
at scale

Rapid
prototyping,
personal
projects

Skill
Re-
quire-
ments

Problem-
solving
fundamen-
tals,
domain
knowledge

Under-
standing
of AI
behavior,
prompt
patterns

Algorithm
design,
logical
thinking

System
design,
oversight
capabili-
ties

Basic
problem
articulation

Agency
&
Con-
trol

High
human
agency
with AI as
tool

Split
agency;
human
directs,
AI
executes

Human
expresses
intent, AI
interprets

AI has
high
agency
with
human
boundaries

AI has high
agency with
minimal
constraints

Lim-
ita-
tions

More time-
intensive
initially

Less focus
on human
under-
standing

Limited to
algorithm
expression

Risk of
loss of
control
and under-
standing

Limited
learning and
quality
control

328



C.2. Overview of AI Coding Assistant Types

As-
pect

Intentional
Prompting

Prompt
Engineer-
ing

Pseu-
docode for
LLMs

Agentic
Program-
ming

Vibe
Program-
ming/Coding

Fu-
ture
Adapt-
abil-
ity

High;
methodol-
ogy adapts
to
advancing
AI

Medium;
tech-
niques
require
updating
with new
models

Medium-
high;
concept
remains
valid with
improving
models

High;
benefits
from
advancing
agent capa-
bilities

Low;
vulnerable to
AI
limitations

This table highlights how intentional prompting focuses on structured
human-led collaboration, while other approaches prioritize different aspects
of the AI-human interaction. The right approach depends on your specific
goals, team composition, and project requirements.

C.2. Overview of AI Coding Assistant Types

AI coding tools generally fall into several categories, each with different
integration points in the development workflow:

C.2.1. Integrated Development Environment (IDE) Extensions

These tools integrate directly into your code editor:

• Examples: GitHub Copilot, Amazon CodeWhisperer, Tabnine
• Strengths: Seamless workflow integration, real-time suggestions,

context-aware completion
• Limitations: Limited explanation capabilities, primarily focused on

code generation

329



C. AI Tool Comparison

C.2.2. Conversational Assistants

These tools provide a chat interface for code-related discussions:

• Examples: Claude, ChatGPT, Bard, Perplexity
• Strengths: Detailed explanations, interactive problem-solving, edu-

cational capabilities
• Limitations: Less seamless integration with coding workflow, more

context-switching

C.2.3. AI-Enhanced IDEs

These are specialized editors built around AI capabilities:

• Examples: Cursor, Replit AI, GitHub Copilot Workspace
• Strengths: Purpose-built for AI collaboration, optimized workflows
• Limitations: May require changing your preferred development

environment

C.2.4. Code Analyzers and Explainers

These specialized tools focus on understanding existing code:

• Examples: Sourcegraph Cody, Mintlify Doc Writer, CodeSquire
• Strengths: Code comprehension, documentation generation, code-

base navigation
• Limitations: Often more limited in code generation capabilities

C.3. Feature Comparison Matrix

330



C.3. Feature Comparison Matrix

Fea-
ture

GitHub
Copilot

Amazon
CodeWhisperer

Tab-
nine Claude

Chat-
GPT

Cur-
sor

Code
Com-
ple-
tion

����� ����� ����� ����� ����� �����

Code
Gen-
era-
tion

����� ����� ����� ����� ����� �����

Code
Ex-
pla-
na-
tion

����� ����� ����� ����� ����� �����

De-
bug-
ging
Help

����� ����� ����� ����� ����� �����

Multi-
file
Con-
text

����� ����� ����� ����� ����� �����

Learn-
ing
Re-
source

����� ����� ����� ����� ����� �����

Work-
flow
Inte-
gra-
tion

����� ����� ����� ����� ����� �����

331



C. AI Tool Comparison

Fea-
ture

GitHub
Copilot

Amazon
CodeWhisperer

Tab-
nine Claude

Chat-
GPT

Cur-
sor

Doc-
u-
men-
ta-
tion
Gen-
era-
tion

����� ����� ����� ����� ����� �����

Code
Refac-
tor-
ing

����� ����� ����� ����� ����� �����

Secu-
rity
Focus

����� ����� ����� ����� ����� �����

Note: Ratings are subjective and based on capabilities at the time of writing.
The AI assistant landscape evolves rapidly, so check current capabilities
before making decisions.

C.4. Detailed Tool Profiles

C.4.1. GitHub Copilot

Overview: Developed by GitHub and OpenAI, Copilot integrates directly
into code editors like VS Code, providing real-time code suggestions.

Key Strengths: - Seamless integration into the coding workflow - Strong
at completing code based on context and comments - Supports multiple
programming languages - Understands project context and patterns

332



C.4. Detailed Tool Profiles

Limitations: - Limited explanatory capabilities - May suggest depre-
cated or insecure patterns - Requires careful review of generated code -
Subscription-based pricing model

Best For: - Accelerating routine coding tasks - Exploring implementation
options quickly - Developers who prefer in-editor assistance - Teams already
using GitHub ecosystem

Usage Tips: - Write detailed comments before generating code - Review
security implications of suggestions - Use alongside documentation for
better understanding - Don’t rely on it exclusively for complex logic

C.4.2. Claude

Overview: Anthropic’s Claude is a conversational AI assistant that excels
at nuanced understanding and detailed explanations.

Key Strengths: - Exceptional at explaining complex concepts - Strong
reasoning capabilities - Detailed, thoughtful responses - Good at under-
standing nuanced requirements - Helpful for educational purposes

Limitations: - Less direct integration with development environments -
Requires context-switching from coding to conversation - Limited awareness
of project-wide context

Best For: - Learning programming concepts - Debugging complex issues -
Getting detailed explanations of code behavior - Exploring multiple solution
approaches - Working through design decisions

Usage Tips: - Provide sufficient context about your project - Use the six-
step methodology to structure interactions - Ask for explanations alongside
code generation - Verify suggestions against documentation

333



C. AI Tool Comparison

C.4.3. Cursor

Overview: An AI-native code editor built from the ground up for AI-
assisted development, based on VSCode but with enhanced AI capabili-
ties.

Key Strengths: - Purpose-built for AI collaboration - Strong multi-file
context understanding - Chat interface within the coding environment
- Code generation and refactoring capabilities - Ability to process and
understand larger codebases

Limitations: - Newer platform with evolving features - Requires adopting
a new editor - May have performance issues with very large projects

Best For: - Developers seeking deep AI integration - Projects requiring
context across multiple files - Refactoring and exploring large codebases -
Teams fully embracing AI-assisted development

Usage Tips: - Use the chat interface for complex queries - Leverage multi-
file search for context-aware suggestions - Structure prompts clearly for
better results - Combine with version control for safer experimentation

C.5. Comparative Strengths for Specific Tasks

C.5.1. Learning New Concepts

Best Tools: Claude, ChatGPT Approach: These conversational tools
excel at explaining programming concepts with examples, analogies, and
detailed breakdowns. They can adapt explanations based on your follow-up
questions.

334



C.5. Comparative Strengths for Specific Tasks

C.5.2. Rapid Prototyping

Best Tools: GitHub Copilot, Cursor Approach: For quickly implement-
ing a proof of concept, these tools can generate functional code based on
comments or specifications, allowing for fast iteration.

C.5.3. Code Documentation

Best Tools: Claude, ChatGPT, Mintlify Doc Writer Approach: These
tools can generate comprehensive documentation for existing code, explain-
ing functionality and providing usage examples.

C.5.4. Debugging and Problem-Solving

Best Tools: Claude, Cursor, ChatGPT Approach: These tools can
analyze error messages, trace through code execution, and suggest potential
fixes for issues.

C.5.5. Refactoring Existing Code

Best Tools: Cursor, GitHub Copilot, Claude Approach: These tools can
suggest improvements to existing code, identify patterns for refactoring,
and help implement changes systematically.

C.5.6. Security Auditing

Best Tools: Amazon CodeWhisperer, specialized security tools Ap-
proach: Some tools specifically focus on identifying potential security
vulnerabilities and suggesting secure coding patterns.

335



C. AI Tool Comparison

C.6. Choosing the Right Tool Combination

No single AI coding assistant excels at everything. Consider these comple-
mentary combinations:

C.6.1. IDE Extension + Conversational Assistant

Example: GitHub Copilot + Claude Benefits: Combines seamless in-
editor completion with detailed explanations and problem-solving capabili-
ties

C.6.2. AI-Enhanced IDE + Specialized Tools

Example: Cursor + Mintlify Doc Writer Benefits: Comprehensive coding
environment with specialized documentation generation

C.6.3. Multiple Conversational Assistants

Example: Claude + ChatGPT Benefits: Leverage different strengths
and compare suggestions from multiple models

C.7. Cost Considerations

When evaluating AI coding tools, consider these cost dimensions:

C.7.1. Direct Costs

• Subscription fees (individual or team)
• Usage-based pricing (API calls, tokens)
• Free tiers and limitations

336



C.8. Future Trends

C.7.2. Indirect Costs

• Learning curve for new tools
• Integration effort
• Context-switching overhead
• Code review requirements

C.7.3. Return on Investment Factors

• Development time savings
• Code quality improvements
• Learning and skill development
• Team collaboration benefits

C.8. Future Trends

The AI coding assistant landscape is rapidly evolving. Watch for these
emerging trends:

1. Deeper development environment integration with more con-
textual awareness

2. Specialized domain expertise in particular frameworks or indus-
tries

3. Enhanced collaboration features for team-based AI interaction
4. Improved security and compliance capabilities
5. Customization and fine-tuning for specific codebases or coding

styles
6. Multimodal interactions combining code, natural language, and

visual elements
7. Agent-based capabilities that can autonomously perform complex

tasks

337



C. AI Tool Comparison

C.9. Practical Selection Framework

When choosing AI coding tools for your workflow, consider:

1. Primary Development Environment

• Which editors or IDEs do you currently use?
• What integration options are available?

2. Main Use Cases

• Code generation vs. explanation vs. refactoring
• Learning vs. productivity

3. Team Considerations

• Consistency across team members
• Collaboration requirements
• Code review processes

4. Technical Constraints

• Language and framework support
• Project size and complexity
• Security and compliance requirements

5. Learning Curve

• Time investment required
• Training needs for the team

6. Cost Structure

• Budget constraints
• Value alignment with primary use cases

338



C.10. Key Takeaways

C.10. Key Takeaways

• No single tool excels at everything - consider complementary
combinations

• Match tools to specific tasks rather than trying to find one
universal solution

• Consider the full development workflow when evaluating inte-
gration points

• Recognize that the landscape is evolving rapidly - stay in-
formed about new capabilities

• Different team members may benefit from different tools
based on their roles and experience

• The intentional prompting methodology applies regardless
of tool choice - the principles remain consistent

By thoughtfully selecting and combining AI coding tools based on your
specific needs, you can create a development environment that maximizes
the benefits of AI assistance while maintaining human control and under-
standing.

339





D. Glossary

This glossary provides definitions for key terms used throughout “Inten-
tional Prompting.”

D.1. AI-Related Terms

AI Coding Assistant: Software tools that use artificial intelligence to
help programmers write, understand, and debug code. Examples include
GitHub Copilot, Amazon CodeWhisperer, and conversational AI models
like Claude and ChatGPT when used for programming tasks.

Chain-of-Thought Prompting: A technique that encourages AI to
break down complex reasoning into intermediate steps, producing more
comprehensive and accurate outputs.

Few-Shot Prompting: Providing an AI with examples of the desired
input-output behavior before presenting the actual task, helping guide the
model’s response format and approach.

Foundation Model: Large AI models trained on vast datasets that serve
as the basis for more specialized applications, including coding assistants.

Large Language Model (LLM): AI systems trained on massive text
datasets that can generate human-like text and code based on prompts.

Prompt Engineering: The practice of crafting effective instructions for
AI systems to produce desired outputs, involving specific techniques and
patterns.

341



D. Glossary

Zero-Shot Prompting: Asking an AI to perform a task without providing
examples, relying on the model’s pre-existing knowledge.

D.2. Intentional Prompting Concepts

Intentional Prompting: A deliberate approach to programming that
leverages AI tools while maintaining human control over the development
process. It focuses on understanding, guiding AI through structured
methodology, using AI as a learning tool, and maintaining the human
developer as the architect and decision-maker.

Six-Step Methodology: The structured approach at the core of inten-
tional prompting: 1. Restate the problem 2. Identify input and output
3. Work the problem by hand 4. Write pseudocode 5. Convert to code 6.
Test with data

Challenge Prompts: Deliberately introducing programming challenges
to test understanding and explore potential issues.

Clarification Prompts: Questions that refine requirements and explore
edge cases before implementation.

Foundation Prompts: Initial prompts that establish baseline require-
ments for a programming task.

Refinement Prompts: Prompts that push for code improvements based
on best practices and efficiency considerations.

Scaffolding Prompts: Prompts that support learning by breaking down
complex concepts into understandable components.

342



D.3. Programming Concepts

D.3. Programming Concepts

Code Smell: Patterns in code that may indicate deeper problems or
potential for improvement.

Edge Case: A problem or situation that occurs only at an extreme
operating parameter, often requiring special handling in code.

Pseudocode: A simplified, high-level description of a computer program
or algorithm, using structural conventions of programming languages but
intended for human reading rather than machine reading.

Refactoring: The process of restructuring existing code without changing
its external behavior, typically to improve non-functional attributes like
readability, reduce complexity, or improve maintainability.

Technical Debt: The implied cost of additional rework caused by choosing
an easy (but limited) solution now instead of using a better approach that
would take longer.

D.4. Teaching and Learning Terms

AI-Proof Assignment: Assignments designed to be difficult for AI coding
assistants to solve directly, often focusing on conceptual understanding or
novel problems.

Documentation-First Methodology: An approach where students
create detailed specifications and documentation before writing any code,
using AI to evaluate completeness and clarity.

Process-Based Assessment: Evaluating students based on their problem-
solving approach and understanding rather than just the final code out-
put.

343




	Preface
	Who This Book Is For
	How This Book Is Organized
	Related Resources

	The Philosophy
	Conversation, Not Delegation
	The Core Distinction
	What is a ``Prompt''?
	What is ``Intentional Prompting''?
	The Philosophy in Action
	Python
	Business
	Beyond Programming
	What is Ahead


	Foundations
	Introduction
	Applying the Philosophy to Software Development
	What is Intentional Prompting?
	Intentional Prompting vs. Prompt Engineering

	Why Intentional Prompting Matters
	Beyond Automation: The Case for Human Oversight

	The Six-Step Methodology
	Who Should Read This Book
	Related Materials

	The AI Revolution in Programming
	Evolution of Programming Tools
	Types of AI Coding Assistants
	Code Completion Tools
	Conversational AI Assistants
	IDE Integrations

	Capabilities and Limitations
	What AI Can Do Well
	Current Limitations

	Common Misconceptions
	``AI Will Replace Programmers''
	``AI Always Produces Correct Code''
	``Using AI Is Cheating''
	``AI Works Best When Asked for Complete Solutions''

	The Human-AI Partnership Model
	The Human Provides:
	The AI Provides:

	Emerging Approaches to AI-Assisted Development
	Vibe Coding: Embracing AI-Led Development
	Intentional Prompting: Human-Directed AI Assistance
	Collaborative Integration: Finding the Middle Ground

	Looking Ahead

	Principles of Intentional Prompting
	The Spectrum of AI Integration Approaches
	Permissive Approach: ``Just Take the Answer''
	Dismissive Approach: ``Reject AI Outright''
	Collaborative Approach: ``Human-Directed AI Assistance''
	Comparing Intentional Prompting vs. Vibe Programming
	Example: Different Approaches to the Same Challenge

	Maintaining Human Agency
	Directive vs. Delegative Approaches
	Techniques for Maintaining Agency

	Understanding vs. Copying
	The ``Black Box'' Problem
	Signs of Understanding
	Strategies for Building Understanding

	Process Over Output
	Why Process Matters
	The Six-Step Process
	Integrating AI Into Your Process

	The Learning Mindset
	Characteristics of a Learning Mindset
	AI as a Learning Partner
	Intentional Learning Techniques

	Ethical Considerations
	Attribution and Transparency
	Security and Quality Responsibility
	Bias and Fairness
	Professional Development Balance

	Addressing Common Concerns and Resistance to LLMs
	The Ambiguity of Natural Language
	The Non-Deterministic Nature of LLMs
	Procedural Knowledge Transfer
	Finding the Right Balance

	Putting Principles Into Practice


	Methodology
	The Six-Step Programming Methodology
	Overview of the Methodology
	Design (Thinking) Phase - Steps 1-4
	Coding (Doing) Phase - Steps 5-6
	The Hidden Structure of the Methodology
	Adapting to Your Preferred Methodology

	How AI Changes the Process
	Acceleration and Exploration
	The Temptation to Skip Steps
	New Capabilities and Responsibilities

	Benefits of a Structured Approach
	Better Code Quality
	Enhanced Learning
	Appropriate AI Integration
	Reduced Technical Debt

	Case Study: Solving a Problem With and Without AI
	Approach 1: Delegating to AI (Without Methodology)
	Approach 2: The Six-Step Methodology with AI Assistance


	Restate and Identify (Steps 1-2)
	Techniques for Problem Restatement
	Why Restatement Matters
	Effective Restatement Approaches
	Using AI to Enhance Restatement

	Clearly Defining Inputs and Outputs
	Why Input/Output Specification Matters
	Elements of Complete I/O Specifications
	Documenting I/O With Examples
	Using AI to Explore Edge Cases

	Prompting Techniques for Requirement Clarification
	The Five Whys Technique
	Stakeholder Perspective Prompting
	Requirement Expansion
	Comparative Analysis

	Practical Exercise: Restate and Identify in Action
	Step 1: Restate the Problem
	Step 2: Identify Input and Output

	Moving Forward

	Work by Hand (Step 3)
	The Importance of Manual Examples
	Why Work By Hand?
	Mental Models vs. Pattern Matching

	Tracing Algorithms Step by Step
	The Tracing Process
	Visualization Techniques

	Testing Assumptions
	Assumption Categories
	The ``What If?'' Technique

	Sharing Your Manual Work with AI
	Verification of Manual Solutions
	Exploring Alternative Approaches
	Identifying Edge Cases

	Practical Exercise: Working By Hand
	Chosen Example: ``babad''
	Edge Case: Empty String
	Edge Case: Single Character
	Edge Case: All Same Characters
	Edge Case: No Palindromes Longer Than 1
	Validating Our Approach with AI

	Insights from Working By Hand
	Key Takeaways
	Moving Forward

	Pseudocode (Step 4)
	Writing Effective Pseudocode
	What Makes Good Pseudocode?
	Common Pseudocode Conventions

	Pseudocode and LLMs: A Natural Partnership
	Why Pseudocode Works Well with LLMs
	Pseudocode as Disambiguation Tool
	SudoLang: Pseudocode Optimized for LLMs
	LLMs as Pseudocode Interpreters
	Pseudocode vs. Comments

	AI-Assisted Algorithm Design
	Generating Initial Pseudocode
	Refining Pseudocode
	Comparing Alternative Approaches

	From Pseudocode to Implementation Plan
	Adding Implementation Details
	Creating Function Signatures
	Planning Test Coverage

	Comparing Alternative Approaches
	Evaluation Criteria
	Structured Comparison
	Making an Informed Decision

	Key Takeaways
	Moving Forward

	Convert to Code (Step 5)
	Strategies for Code Implementation
	From Pseudocode to Code: A Systematic Approach
	Incremental Implementation
	Language-Specific Considerations

	Working with AI Code Suggestions
	Prompting for Implementation
	Evaluating AI-Generated Code
	Handling Unfamiliar Syntax or Libraries

	Maintaining Code Quality
	Idiomatic Code
	Error Handling
	Performance Optimization
	Documentation and Comments

	Practical Exercise: Implementing Our Solution
	Converting the Pseudocode
	Final Implementation
	Testing the Implementation

	Key Takeaways
	Moving Forward

	Test with Data (Step 6)
	Comprehensive Testing Strategies
	The Importance of Thorough Testing
	Types of Test Cases

	Edge Case Identification
	Common Edge Case Categories
	Using AI to Identify Edge Cases

	AI-Assisted Test Generation
	Generating Test Cases
	Generating Test Code

	Learning from Test Failures
	Debugging with AI Assistance
	Test Execution and Results
	Fixing Issues Based on Test Results
	Rerunning Tests

	Key Takeaways
	Moving Forward


	Patterns & Practices
	Intentional Prompting Patterns
	The Art of Guiding AI
	Prompt Engineering: A Foundational Discipline
	From Prompt Engineering to Intentional Prompting
	Core Prompt Engineering Techniques

	Types of Intentional Prompts
	Foundation Prompts
	Clarification Prompts
	Scaffolding Prompts
	Challenge Prompts
	Refinement Prompts
	Error Induction Prompts

	Effective Prompting Patterns
	The ``What If?'' Pattern
	The Incremental Building Pattern
	The Deliberate Error Pattern
	The Comparative Analysis Pattern

	Advanced Prompt Engineering Strategies
	Context-Enhanced Prompting
	Constraint-Based Prompting
	Template-Guided Prompting

	Integrating Prompt Engineering with Intentional Prompting
	The Symbiotic Relationship
	Reinforcing the Six-Step Methodology
	Beyond the Six-Step Framework: Universal Application
	AI as a Thoughtful Assistant

	Measuring Your Progress
	Case Study: Improving a Weather Data Function
	Initial Prompt
	Initial AI-Generated Code
	Analysis of the Initial Code
	Follow-up Prompt with Specific Improvements
	Improved AI-Generated Code
	Why This Prompting Strategy Was Effective

	Key Takeaways

	Debugging with AI
	Common Debugging Scenarios
	Syntax Errors
	The Hypothesis Testing Approach
	The Comparative Analysis Approach

	Understanding Error Messages with AI
	Anatomy of Error Messages
	Common Error Patterns

	Debugging Strategies with AI
	Rubber Duck Debugging

	Avoiding Debugging Pitfalls
	The XY Problem
	The Correlation ≠ Causation Trap
	The Bandage Solution


	Refactoring Strategies
	When and Why to Refactor
	Recognizing Refactoring Opportunities
	Case Study 2: Reducing Duplication

	Key Takeaways
	Moving Forward

	Case Studies
	Case Study 1: Building a Data Analysis Pipeline
	The Problem
	The Intentional Prompting Approach
	Before and After Example: Improving a Key Function
	Lessons Learned

	Case Study 3: Debugging a Complex Bug
	The Problem
	The Intentional Prompting Approach

	Key Takeaways
	Moving Forward


	Advanced Topics
	Scaling to Complex Projects
	Beyond Single-File Programs
	The Challenges of Scale
	Intentional Architecture Design
	Component-Level Intentional Prompting

	Managing AI in Larger Codebases
	Context Limitations
	Maintaining Consistency
	Modular Prompting Strategies

	Intentional System Design with Prompting
	Designing for Evolution
	Cross-Cutting Concerns

	Documentation and Knowledge Transfer
	Intentional System Documentation
	AI-Enhanced Code Documentation


	Teaching and Learning
	Pedagogical Applications of Intentional Prompting
	Rethinking Programming Education
	The Educator's Role in the AI Era
	Integrating AI into Curriculum Design

	Designing Assignments in the AI Era
	Beyond ``AI-Proof'' Assignments
	Prompting-Focused Assignments
	Step-by-Step Guided Exercise
	Evaluation and Improvement Assignments
	Comparative Analysis Assignments
	Process Documentation Assignments

	Assessing Understanding vs. Output
	Moving Beyond Code Assessment
	Process-Based Assessment
	Concept Demonstration
	Code Modification Challenges
	Prompt Engineering Assessment

	Building a Learning Community
	Collaborative Learning in the AI Era
	Peer Learning Strategies
	Creating a Supportive Environment

	Case Studies in Educational Settings
	Case Study 1: Introductory Programming Course
	Case Study 2: Advanced Software Engineering Course

	Practical Guide for Educators
	Introducing Intentional Prompting in Your Curriculum
	Sample Lesson Plan: Introduction to Intentional Prompting

	Practical Guide for Students
	Maximizing Learning with AI Assistance
	Self-Assessment Questions

	Key Takeaways
	Moving Forward

	Future Directions
	Emerging AI Capabilities
	Beyond Text-Based Interfaces
	Increasing Autonomy and Agentic Programming

	Evolving Programming Paradigms
	From Code Writing to Code Curation
	New Programming Languages and Tools

	Preparing for Future Changes
	Skill Evolution for Developers
	Organizational Adaptation

	Maintaining the Human Element
	Ethical Considerations
	Human Comparative Advantages

	Vision for Intentional Prompting's Evolution
	Short-Term Evolution (1-3 Years)
	Medium-Term Evolution (3-7 Years)
	Long-Term Vision (7+ Years)

	A Personal Development Roadmap
	Building Your Intentional Prompting Skills
	Continuous Adaptation

	Key Takeaways
	Intentional Prompting Beyond Programming
	Universal Principles of AI Collaboration
	The Five Principles in Any Domain
	The Future of Human-AI Partnership

	Conclusion


	Acknowledgments
	Author
	AI Assistance
	Technical Production
	Special Thanks

	Appendices
	Prompt Templates
	Problem Analysis Templates
	Understanding Requirements
	Exploring Problem Complexity

	Learning-Oriented Templates
	Concept Explanation
	Code Comprehension

	Development Templates
	Incremental Development
	Refactoring

	Debugging Templates
	Error Diagnosis
	Performance Issue

	Architecture Templates
	Design Pattern Selection
	Component Design

	Testing Templates
	Test Case Generation
	Testing Strategy

	Using These Templates Effectively

	Common Pitfalls and Solutions
	Over-Reliance on AI
	Symptoms
	Root Causes
	Solutions

	Unclear Prompt Formulation
	Symptoms
	Root Causes
	Solutions

	Accepting Incorrect Solutions
	Symptoms
	Root Causes
	Solutions

	Losing Track of the Big Picture
	Symptoms
	Root Causes
	Solutions

	Ethical and Legal Concerns
	Symptoms
	Root Causes
	Solutions

	Prompt Pattern Case Studies
	Case Study 1: Debugging a Complex Algorithm
	Case Study 2: Implementing a New Feature


	AI Tool Comparison
	Approaches to AI-Assisted Programming
	Comparative Framework for AI Programming Approaches

	Overview of AI Coding Assistant Types
	Integrated Development Environment (IDE) Extensions
	Conversational Assistants
	AI-Enhanced IDEs
	Code Analyzers and Explainers

	Feature Comparison Matrix
	Detailed Tool Profiles
	GitHub Copilot
	Claude
	Cursor

	Comparative Strengths for Specific Tasks
	Learning New Concepts
	Rapid Prototyping
	Code Documentation
	Debugging and Problem-Solving
	Refactoring Existing Code
	Security Auditing

	Choosing the Right Tool Combination
	IDE Extension + Conversational Assistant
	AI-Enhanced IDE + Specialized Tools
	Multiple Conversational Assistants

	Cost Considerations
	Direct Costs
	Indirect Costs
	Return on Investment Factors

	Future Trends
	Practical Selection Framework
	Key Takeaways

	Glossary
	AI-Related Terms
	Intentional Prompting Concepts
	Programming Concepts
	Teaching and Learning Terms



